PEARSON

@000 06

®AF LR

lan Sommerville

e

ZREEHKF

(SFoW - Fixt)

Mo Il H A

SOMMERVILLE

4 ’
A

égeg

A

®E LR

(3E3ChR - 559K)

(Ninth Edition)

%) lan Sommerville
(R) “samawrs

&

LA T W ORR

China Machine Press

English reprint edition copyright © 2011 by Pearson Education Asia Limited and China
Machine Press.

Original English language title: Software Engineering, Ninth Edition (ISBN 978-0-13-
703515-1) by Ian Sommerville, Copyright © 2011, 2006, 2005, 2001, 1996.

All rights reserved.

Published by arrangement with the original publisher, Pearson Education, Inc., publishing as
Addison-Wesley.

For sale and distribution in the People’s Republic of China exclusively (except Taiwan, Hong
Kong SAR and Macau SAR).

A5 ¥ LR ENHR i Pearson Education Asia Ltd. #AWWLAE Tk AR R AR, REHRE
BEIGFA, AEUEMFREHSRPEEBHNE.

(URTFrREANRLAEERN (MEEFEEE, BIRITEREFHEEBHX) #HEXT,

A 4534 il 4 Pearson Education (3FA#H HIRER) BB AIRE, TREZLBEE.

R TR AR 2 AR
WA, REULR
AP ERME ERTREARHESR

ABFENEIZS: BF: 01-2011-2883
EBERRS&E (CIP) ¥

ek TR (eSO - B9RR) / (%) TEBRZESR (Sommerville, I.) . —Jb3K: #HlAR Lok
RR$t, 2011.6

(& RS)

4545 . Software Engineering, Ninth Edition

ISBN 978-7-111-34825-2
L4k Lg% DL kT8 - — %3 IV. TP31LS
R [E bR A B IECIPE iR F (2011) 350978685

HUBR Tl R # (bst PR E | 5 k#5228 WEB4RS 100037)
T BiRF

AL TR IMEN 55 A PR 28 BIEN R

2011 4E 6 A5 1 RS 1 YENRY

170mm x 242mm ¢ 49.5E[15k

bR, ISBN 978-7-111-34825-2

Effr: 99.007C

AS, AT, . K, BAERITEHIRGR
ZIR#AEL . (010) 88378991, 88361066

W45 $hek. (010) 68326294, 88379649, 68995259
BRathek. (010) 88379604

B {E4 . hzjsi@hzbook.com

R B91E

.
~ R

XEREXURE, FRE-KOBEENE S EENZEARAE, FATERERR
FHER & SURIE T ZW RS hIERXH#NES, EXEERERBEAREN
ATZERLARED . HORNE, EELCHERS, EENLR 5HE Tk
BEEMES, HREIEFRHIFZ R LA} R & BB, Hikm™
HERIRAPEEE, TUERTHRARNTERE, DEIRTEZRANESE, REBZERN
B, XBR%ENE, KMMEHFASEE AR TRER.

LA, E2KREBAXREIHIT, REMITEN™ LR RRE, *ELALTH
FTRAZEY, XX HENEEFFALRFEELILIE, APk, mElkEMiE
REHFRE LERERRE. EREFEEBARREMAZENIRT, XEEXE
EREX RIS RRAILHERBRERNELE RSB DA T SEREEZL.
B, 5IE—#ESMET HENEMFX R E T ELEE F LR RER RS
EM, WRERSHFER. BREENHR —RRRFHLHZE.

PLM T iRt BE A RREEIRE “HREBEABFTIRS” . HI1998EFF 4,
BT TIEERRET #E. BEEMBEM L. L SEHNTWE N, &I
EPearson, McGraw-Hill, Elsevier, MIT, John Wiley & Sons, Cengageilt i
AHRAREST REFMAERXRFR, MbIIELA WSS F#E4H + 8% H Andrew S.
Tanenbaum, Bjarne Stroustrup, Brain W. Kernighan, Dennis Ritchie, Jim Gray,
Afred V. Aho, John E. Hopcroft, Jeffrey D. Ullman, Abraham Silberschatz, William
Stallings, Donald E. Knuth, John L. Hennessy, Larry L. PetersonZE kUi &R —iit
Sfed, UL “HENRHEAR" AHERHR, #HiE%s]. AREE. KEAL
BHRHE, WEARTXEABHRAFEE,

“HREIFHEAS" B TIERE TENIMEENR DR, BERNERTN
R TR ERERES, ST EHAE TREMERMNITIE, WESHES b
HAREHIEREDERNEE, ARLSERARBHPEREF. €4, “HEILR*
ME” E2HR TERBE A, XEBEEREPRLTREVOB, FiFsHE
BRAAEXRBMMSELE. KL “SHFRIE" EHh kSt £
EHEBIE BRI ER TR,

BURHITERR . LM B . —RAVIER . PRI, MU gREE, XEHEEE
BATEBE THRERRIE. BEETEILRE SHEAR L 2R IR A AW 58 & Fi Bt
BORRRERIL, BE X E SN RALBA R AR A —AEIE B,
M ERERERE, MRBENELERRNMNEFX—&RK BRI EZERY. 2L
RIGI TR e 310 TR i Sds TR IE, MR R S HEaT -

HEZM 4L . www.hzbook.com
B F {4 . hzjsj@hzbook.com
BAZHBIE. (010) 88379604
BRI, X TEREE 7 E&HS CEHE

BREL4RED . 100037 LT HBE B ER T S

PREFACE

As I was writing the final chapters in this book in the summer of 2009, I realized
that software engineering was 40 years old. The name ‘software engineering’ was
proposed in 1969 at a NATO conference to discuss software development problems—
large software systems were late, did not deliver the functionality needed by their
users, cost more than expected, and were unreliable. I did not attend that conference
but, a year later, I wrote my first program and started my professional life in software.

Progress in software engineering has been remarkable over my professional life-
time. Our societies could not function without large, professional software systems.
For building business systems, there is an alphabet soup of technologies—J2EE,
NET, SaaS, SAP, BPELAWS, SOAP, CBSE, etc.—that support the development and
deployment of large enterprise applications. National utilities and infrastructure—
energy, communications, and transport—all rely on complex and mostly reliable
computer systems. Software has allowed us to explore space and to create the World
Wide Web, the most significant information system in the history of mankind.
Humanity is now faced with a new set of challenges—climate change and extreme
weather, declining natural resources, an increasing world population to be fed and
housed, international terrorism, and the need to help elderly people lead satisfying
and fulfilled lives. We need new technologies to help us address these problems and,
for sure, software will play a central role in these technologies.

Software engineering is, therefore, a critically important technology for the future
of mankind. We must continue to educate software engineers and develop the disci-
pline so that we can create more complex software systems. Of course, there are still
problems with software projects. Software is still sometimes late and costs more
than expected. However, we should not let these problems conceal the real successes
in software engineering and the impressive software engineering methods and tech-
nologies that have been developed.

Software engineering is now such a huge area that it is impossible to cover the
whole subject in one book. My focus, therefore, is on key topics that are fundamental

\{l

Preface

Integration with the Web

to all development processes and topics concerned with the development of reliable,
distributed systems. There is an increased emphasis on agile methods and software
reuse. I strongly believe that agile methods have their place but so too does ‘tradi-
tional’ plan-driven software engineering. We need to combine the best of these
approaches to build better software systems.

Books inevitably reflect the opinions and prejudices of their authors. Some read-
ers will inevitably disagree with my opinions and with my choice of material. Such
disagreement is a healthy reflection of the diversity of the discipline and is essential
for its evolution. Nevertheless, I hope that all software engineers and software engi-
neering students can find something of interest here.

There is an incredible amount of information on software engineering available on the
Web and some people have questioned if textbooks like this one are still needed.
However, the quality of available information is very patchy, information is sometimes
presented badly and it can be hard to find the information that you need. Consequently,
I believe that textbooks still have an important role to play in learning. They serve as a
roadmap to the subject and allow information on method and techniques to be organized
and presented in a coherent and readable way. They also provide a starting point for
deeper exploration of the research literature and material available on the Web.

I strongly believe that textbooks have a future but only if they are integrated with
and add value to material on the Web. This book has therefore been designed as a
hybrid print/web text in which core information in the printed edition is linked to
supplementary material on the Web. Almost all chapters include specially written
‘web sections’ that add to the information in that chapter. There are also four ‘web
chapters’ on topics that I have not covered in the print version of the book.

The website that is associated with the book is:

http://www.SoftwareEngineering-9.com

The book’s web has four principal components:

1. Web sections These are extra sections that add to the content presented in each
chapter. These web sections are linked from breakout boxes in each chapter.

2. Web chapters There are four web chapters covering formal methods, interaction
design, documentation, and application architectures. I may add other chapters
on new topics during the lifetime of the book.

3. Material for instructors The material in this section is intended to support peo-
ple who are teaching software engineering. See the “Support Materials” section
in this Preface.

4. Case studies These provide additional information about the case studies used
in the book (insulin pump, mental health-care system, wilderness weather system)

Preface v

as well as information about further case studies, such as the failure of the
Ariane 5 launcher.

As well as these sections, there are also links to other sites with useful material on
software engineering, further reading, blogs, newsletters, etc.

I welcome your constructive comments and suggestions about the book and the
website. You can contact me at ian@ SoftwareEngineering-9.com. Please include
[SE9] in the subject of your message. Otherwise, my spam filters will probably
reject your mail and you will not receive a reply. I do not have time to help students
with their homework, so please don’t ask.

The book is primarily aimed at university and college students taking introductory
and advanced courses in software and systems engineering. Software engineers in
the industry may find the book useful as general reading and as a means of updating
their knowledge on topics such as software reuse, architectural design, dependability
and security, and process improvement. I assume that readers have completed an
introductory programming course and are familiar with programming terminology.

Changes from previous editions

This edition has retained the fundamental material on software engineering that was
covered in previous editions but I have revised and updated all chapters and have
included new material on many different topics. The most important changes are:

1. The move from a print-only book to a hybrid print/web book with the web mate-
rial tightly integrated with the sections in the book. This has allowed me to reduce
the number of chapters in the book and to focus on core material in each chapter.

2. Complete restructuring to make it easier to use the book in teaching software
engineering. The book now has four rather than eight parts and each part may be
used on its own or in combination with other parts as the basis of a software
engineering course. The four parts are an introduction to software engineering,
dependability and security, advanced software engineering, and software engi-
neering management.

3. Several topics from previous editions are presented more concisely in a single
chapter, with extra material moved onto the Web.

4. Additional web chapters, based on chapters from previous editions that I have
not included here, are available on the Web.

vl

Preface

I have updated and revised the content in all chapters. I estimate that between
30% and 40% of the text has been completely rewritten.

I'have added new chapters on agile software development and embedded systems.

As well as these new chapters, there is new material on model-driven engineer-
ing, open source development, test-driven development, Reason’s Swiss Cheese
model, dependable systems architectures, static analysis and model checking,
COTS reuse, software as a service, and agile planning.

A new case study on a patient record system for patients who are undergoing
treatment for mental health problems has been used in several chapters.

I have designed the book so that it can be used in three different types of software
engineering courses:

General introductory courses in software engineering The first part of the book
has been designed explicitly to support a one-semester course in introductory
software engineering.

Introductory or intermediate courses on specific software engineering topics You
can create a range of more advanced courses using the chapters in Parts 2-4. For
example, have taught a course in critical systems engineering using the chapters
in Part 2 plus chapters on quality management and configuration management.

More advanced courses in specific software engineering topics In this case, the
chapters in the book form a foundation for the course. These are then supple-
mented with further reading that explores the topic in more detail. For example,
a course on software reuse could be based around Chapters 16, 17, 18, and 19.

More information about using the book for teaching, including a comparison with

previous editions, is available on the book’s website.

ials

A wide range of support material is available to help people using the book for teach-
ing software engineering courses. This includes:

* PowerPoint presentations for all of the chapters in the book.

* Figures in PowerPoint.

Preface 1x

* Aninstructor’s guide that gives advice on how to use the book in different courses
and explains the relationship between the chapters in this edition and previous
editions.

* Further information on the book’s case studies.
e Additional case studies that may be used in software engineering courses.
* Additional PowerPoint presentations on systems engineering.

* Four web chapters covering formal methods, interaction design, application
architectures, and documentation.

All of this material is available free to readers of the book from the book’s web-
site or from the Pearson support site below. Additional material for instructors is
available on a restricted basis to accredited instructors only:

* Model answers to selected end-of-chapter exercises.

¢ Quiz questions and answers for each chapter.

All support material, including restricted material, is available from:
http://www.pearsonhighered.com/sommerville/

Instructors using the book for teaching may obtain a password to access restricted
material by registering at the Pearson website, by contacting their local Pearson rep-
resentative, or by requesting a password by e-mail from computing@aw.com.
Passwords are not available from the author.

A large number of people have contributed over the years to the evolution of this
book and I'd like to thank everyone (reviewers, students, and book users) who have
commented on previous editions and made constructive suggestions for change.

I'd particularly like to thank my family (Anne, Ali, and Jane) for their help and
support while the book was being written. A big thank-you especially to my daugh-
ter, Jane, who discovered a talent for proofreading and editing. She was tremen-
dously helpful in reading the entire book and did a great job spotting and fixing a
large number of typos and grammatical errors.

Ian Sommerville
October 2009

CONTENTS

Preface v

Part 1 Introduction to Software Engineering 1
Chapter 1 Introduction 3
1.1 Professional software development 5

1.2 Software engineering ethics 14

1.3 Case studies 17

Chapter 2 Software processes 27
2.1 Software process models 29

2.2 Process activities 36

2.3 Coping with change 43

2.4 The rational unified process 50

r 3 Agile software development 56

3.1 Agile methods 58

3.2 Plan-driven and agile development 62

Contents xi

3.3 Extreme programming 64
3.4 Agile project management 72
3.5 Scaling agile methods 74
Chapter 4 Requirements engineering 82
4.1 Functional and non-functional requirements 84
4.2 The software requirements document 91
4.3 Requirements specification 94
4.4 Requirements engineering processes 929
4.5 Requirements elicitation and analysis 100
4.6 Requirements validation 110
4.7 Requirements management 111
Chapter 5 System modeling 118
5.1 Context models 121
5.2 Interaction models 124
5.3 Structural models 129
5.4 Behavioral models 133
5.5 Model-driven engineering 138
Chapter 6 Architectural design 147
6.1 Architectural design decisions 151
6.2 Architectural views 153
6.3 Architectural patterns 155
6.4 Application architectures 164
Chapter 7 Design and implementation 176
7.1 Object-oriented design using the UML 178

7.2 Design patterns 189

X1l

Contents

73 Implementation issues 193
74 Open source development 198
Software testing 205
8.1 Development testing 210
8.2 Test-driven development 221
8.3 Release testing 224
8.4 User testing 228
Software evolution 234
9.1 Evolution processes 237
9.2 Program evolution dynamics 240
9.3 Software maintenance 242
9.4 Legacy system management 252
Dependability and Security 261
Sociotechnical systems 263
10.1 Complex systems 266
10.2 Systems engineering 273
10.3 System procurement 275
10.4 System development 278
10.5 System operation 281
Dependability and security 289
11.1 Dependability properties 291
11.2 Availability and reliability 295
11.3 Safety 299

11.4 Security 302

Contents X

Dependability and security specification

12.1 Risk-driven requirements specification

12.2 Safety specification
12.3 Reliability specification
12.4 Security specification

12.5 Formal specification

Dependability engineering

13.1 Redundancy and diversity
13.2 Dependable processes
13.3 Dependable system architectures

13.4 Dependable programming

Security engineering

14.1 Security risk management
14.2 Design for security

14.3 System survivability

Dependability and security assurance

15.1 Static analysis
15.2 Reliability testing
15.3 Security testing
15.4 Process assurance

15.5 Safety and dependability cases

Advanced Software Engineering

Software reuse

16.1 The reuse landscape

16.2 Application frameworks

309

31
313
320
329
333

341

343
345
348
355

366

369
375
386

393

395
401
404
406
410

423
425

428
431

xiv Contents

16.3 Software product lines 434

16.4 COTS product reuse 440
Component-based software engineering 452
17.1 Components and component models 455

17.2 CBSE processes 461

17.3 Component composition 468

12 Distributed software engineering 479

18.1 Distributed systems issues 481

18.2 Client-server computing 488

18.3 Architectural patterns for distributed systems 490

18.4 Software as a service 501

ter 19 Service-oriented architecture 508
19.1 Services as reusable components 514

19.2 Service engineering 518

19.3 Software development with services 527

C ¢ 20 Embedded software 537
20.1 Embedded systems design 540

20.2 Architectural patterns 547

20.3 Timing analysis 554

20.4 Real-time operating systems 558

ter 71 Aspect-oriented software engineering 565
21.1 The separation of concerns 567

21.2 Aspects, join points and pointcuts 571

21.3 Software engineering with aspects 576

Contents xv

Software Management 591

Chapter 22 Project management 593
22.1 Risk management 595

22.2 Managing people 602

22.3 Teamwork 607

Project planning 618

23.1 Software pricing 621

23.2 Plan-driven development 623

23.3 Project scheduling 626

23.4 Agile planning 631

23.5 Estimation techniques 633

napter 24 Quality management 651
24.1 Software quality 655

24.2 Software standards 657

24.3 Reviews and inspections 663

24.4 Software measurement and metrics 668
Configuration management 681

25.1 Change management 685

25.2 Version management 690

25.3 System building 693

25.4 Release management 699

_hapter 26 Process improvement 705
26.1 The process improvement process 708

26.2 Process measurement 711

Xvi

Contents

26.3 Process analysis
26.4 Process change

26.5 The CMMI process improvement framework

Glossary
Subject Index
Author Index

715
718
721

733
749
767

