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Preface

This book is devoted to the subject commonly called Chaotic Dynamics, namely the
study of complicated behavior in time of maps and flows, called dynamical systems.

The theory of chaotic dynamics has a deep impact on our understanding of Na-
ture, and we sketch here our view on this question. The strength of this theory comes
from its generality, in that it is not limited to a particular equation or scientific do-
main. It should be viewed as a conceptual framework with which one can capture
properties of systems with complicated behavior. Obviously, such a general frame-
work cannot describe a system down to its most intricate details, but it is a useful and
important guideline on how a certain kind of complex systems may be understood
and analyzed.

The theory is based on a description of idealized systems, such as “hyperbolic”
systems. The systems to which the theory applies should be similar to these idealized
systems. They should correspond to a fixed evolution equation, which, however, need
to be neither modeled nor explicitly known in detail. Experimentally, this means that
the conditions under which the experiment is performed should be as constant as
possible. The same condition applies to analysis of data, which, say, come from the
evolution of glaciations: One cannot apply “chaos theory” to systems under varying
external conditions, but only to systems which have some self-generated chaos under
fixed external conditions.

So, what does the theory allow us to do? We can measure indicators of chaos, and
study their dependence on those fixed external conditions. Is the system’s behavior
regular or chaotic? This can be, for example, inferred by measuring Lyapunov expo-
nents. In general, the theory tells us that complex systems should be analyzed statisti-
catly, and not, as was mostly done betfore the 1960s, by all sorts of Fourier-mode- and
linearized, analysis. We hope that the present book and in particular Sect. 9 shows
whalt the useful and robust indicators are.

The material of this book is based on courses we have given. Our aim is to give
the reader an overview of results which seem important to us, and which are here to
stay. This book is not a mathematical treatise, but a course, which tries to combine
two slightly contradicting aims: On one hand to present the main ideas in a simple
way and to support them with many examples; on the other to be mathematically
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sufficiently precise, without undue detail. Thus, we do not aim to present the most
general results on a given subject, but rather explain its ideas with a simple statement
and many examples. A typical instance of this restriction is that we tacitly assume
enough regularity to allow for a simpler exposition.

The proofs of the main results are often only sketched, because we believe that it
is more important to understand how the concepts fit together in leading to the results
than to present the full details. Thus, we usually spend more space on explaining the
ideas than for the proofs themselves. This point of view should enable the reader to
grasp the essence of a large body of ideas, without getting lost in technicalities. For
the same reason, the examples are carefully chosen so that the general ideas can be
understood in a nutshell.

The level of the book is aimed at graduate students in theoretical physics and
in mathematics. Our presentation requires a certain familiarity with the language of
mathematics but should be otherwise mostly self-contained.

The reader who looks for a mathematical treatise which is both detailed and quite
complete, may look at (de Melo and van Strien 1993; Katok and Hasselblatt 1995).
For the reader who looks for more details on the physics aspects of the subject a
large body of literature is available, with different degrees of mathematical rigor:
(Eckmann 1981) and (Eckmann and Ruelle 1985a) deal with experiments of the
early 1980s; (Manneville 1990; 2004) deals with many experimental setups; (Abar-
banel 1996) is a short course for physicists: (Peinke, Parisi, Rossler, and Stoop 1992)
concentrates on semiconductor experiments; (Golubitsky and Stewart 2002) has a
good mix of mathematical and experimental examples. Finally, (Kantz and Schreiber
2004) deal with nonltnear time series analysis.

The references in the text cover many (but obviously not ail) original papers, as
well as work which goes much beyond what we explain. In this way, the reader may
use the references as a guide for further study. The reader interested in more of an
overview will also find references to textbooks and monographs which shed light on
our subject either from different angle, or in the way of more complete treatises.

Like any such project, to remain of reasonable size, we have omitted several
subjects which might have been of interest; in particular, bifurcation theory (Arnold
1978; Ruelle 1989b; Guckenheimer and Holmes 1990), topological dynamics, com-
plex dynamics, the Kolmogorov—-Arnold-Moser (KAM) theorem and many others.
In particular, we mostly avoid repeating material from our earlier book (Collet and
Eckmann 1980).

After a few introductory chapters on dynamics, we concentrate on two main sub-
jects, namely hyperbolicity and its consequences, and statistical properties of interest
to measurements in real systems.

To make the book easier to read, several definitions and some examples are re-
peated, so that the reader is not obliged to go back and forth too often.

We hope that the many illustrations, simple examples, and exercises help the
reader to penetrate to the core of a beautiful and varied subject, which brings together
ideas and results developed by mathematicians and physicists.
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A Basic Problem

Before we start with the subject proper, it is perhaps useful to look at a concrete
physical example, which can be easily built in the laboratory. It is a pendulum with
a magnet at the end, which oscillates above three symmetrically arranged fixed mag-
nets, which attract the oscillating magnet, as shown in Fig. 1.1. When one holds the
magnet slightly eccentrically and let it go, it will dance around the three magnets,
and finally settle at one of the three, when friction has slowed it down enough.

The interesting question 1s whether one can predict where it will land. That this is
a difficult 1ssue is visible to anyone who does the experiment, because the pendulum
will hover above one of the magnets, “hesitate” and cross over to another one, and
this will happen many times until the movement changes to a small oscillation around
one of the magnets and ends the uncertainty of where it will go. Let us call the
three magnets “red,” “yellow,” “blue”; one can ask for every initial position from
which the magnet is started (with O speed) where it will eventually land. The result
of the numerical simulation, to some resolution, is shown in Fig. 1.2, The incredible
richness of this figure gives an inkling of the complexity of this problem, although
we only deal with a simple classtcal pendulum.

Exercise 1.1. Program the pendulum equation and check the figure. The equations
for the potential U are, for q € R,

Ulg) = —W ZV(q—q, , (1.1)

=0

where q; = (cos(2mj/3),sin(27j/3)) and V(q) = 1/lq|. The equations of motion
are

=p, p=-=y-V,Ug).
where q is a shorthand for dq(t)/dt. The friction coefficient is v = 0.13.

The domains of same color are very complicated, and the surprising thing about
them is that their boundaries actually coincide: If z is in the boundary OR of the red
region, it is also in the boundary of yellow and blue: IR = Y = JB. (This fact has
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Fig. 1.1. Photograph of the pendulum with three magnets (The design is due to U. Smilansky.)

been proven for the simpler example of Fig. 3.6, and we conjecture the same result
for the pendulum.)

The subject of this course is a generic understanding of such phenomena. While
this example is not as clear as the one of the “crab” of Fig. 3.6, it displays a feature
which will follow us throughout: instability. For the case at hand, there is exactly
one unstable point in the problem, namely the center, and it is indicated in yellow in
Fig. 1.3. Whenever the pendulum comes close to this point, it will have to “decide™
on which side it will go: It may creep over the point, and the most minute change in
the initial condition might change the final target color the pendulum will reach.

The aim of this book is to give an account of central concepts used to understand,
describe, and analyze this kind of phenomena. We will describe the tools with which
mathematicians and physicists study chaotic systems.
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Fig. 1.2. The basins of attraction of the three magnets. colar coded. The coordinates are the
two components of the initial position: ¢ = (g1, g2). The three circles show the positions of
the fixed magnets

Fig. 1.3. A typical potential for the pendulum of Fig. 1.1. The equation used for the drawing
is given in {1.1). The coordinates are the two components of the initial position: ¢ = (q1, q2).
the height is the value of the potential
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Dynamical Systems

2.1 Basics of Mechanical Systems

While we assume some familiarity with elementary mechanics, we begin here with
the nonlinear pendulum in 1 dimension, to have some basis of discussion of phase
space and the like. The nonlinear pendulum is a mathematical pendulum, under the
influence of gravity, and with a damping v > 0. Normalizing all the coefficients to
1, we consider the coordinates of this problem: momentum p and the angle . The
pendulum can go over the top, and thus ¢ varies in [0,27) while the momentum
varies in (—o0, 00). (We use here the notation [a, b) to denote the half-open interval
a < x < b.) Thus, the phase space {2 is actually a cylinder (since we identify ¢ = 27
and ¢ = 0). The equations of motion for this problem are

v Q.1
p=—sin(p) —p,

where both ¢ and p are functions of the time ¢, and p = %(p(t), D= %p(t).
This problem has 2 fixed points, where the pendulum does not move, p = 0, with

@ = 0 or m. The fixed point ¢ = = is unstable, and the pendulum will fall down

under any small perturbation (of its initial position, when the initial velocity is ()

while ¢ = 0 is stable. The nature of stability near ¢ = 0 changes with ~, as can be

seen by linearizing (2.1) around ¢ = p = 0.

i) For v = 0O the system is Hamiltonian, and the flow is shown in Fig. 2.1. Such
pictures are called phase portraits, because they describe the phase space, to be
defined more precisely in Sect. 2.2. The vertical axis is p, the circumference of
the cylinder is the variable . The lower equilibrium point is in the front (left)
of the cylinder and the upper equilibrium point is in the back, at the crossing
of the red curves. These curves are called homoclinic orbits, they correspond to
the pendulum leaving the top at zero (infinitesimally small) speed and returning
to it after an infinite time. One can see two such curves, one for each direction
of rotation.
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i) For v € (0,7.), with v, = 2 (critical damping). the orbits are as shown
in Fig. 2.2. The red line is the stable manifold of the unstable fixed point: A
pendulum with initial conditions on the red tine will make a number of full
turns and stop finally (after infinite time) at the unstable equilibrium. All other
initial conditions lead to orbits spiraling into the stable tixed point. The blue line
is called the unstable manifold of the unstable fixed point and it also spirals into
the stable fixed point. We treat this in detail in Sect. 4.1.1.

i) For v = v, the phase portrait is shown in Fig. 2.3. This value of « is the
smallest for which the pendulum, when started at the top (p = 7, p = £, — 0),
will move to the stable fixed point ¢ = 0 without oscillating around it.

iv) For v > 7., which is usually called the supercritical case, the phase portrait
is shown in Fig. 2.4. In this figure, the red and blue lines are again the stable
and unstable manifolds of the unstable fixed point, while the green line is the
strongly stable manifold of the stable fixed point. (The tangent flow of the stable
fixed point has 2 stable (eigen-)directions and the strongly stable one is the
direction which attracts faster.)

v) When v = 0, there is no friction and the flow for the pendulum is area preserv-
ing. We illustrate this in Fig. 2.5. Note that the Poincaré recurrence theorem (see
also Theorem 8.2) tells us that any open set contained in a compact invariant set
must return infinitely often to itself. This is clearly seen for both the red and
the blue region which eventually intersect infinitely often the original ellipse
from which the motion started. Note that Poincaré’s theorem does nor say that a
given point must return close to itself, just that the regions must intersect. Note
furthermore how the regions come close to, but avoid the unstable fixed point
(since the original region did not contain that fixed point).

Some final remarks on general flows in R are in order. They are all described by
differential equations of the form

Sx(t) = Blx(r) 22)

withx : R — R and F : R — R” is called a vector field.

Theorem 2.1. [f ¥ is Lipschitz continuous, the solution of (2.2) either exists for all
times or diverges at some finite time.

Definition 2.2. If F(x_) = 0 one calls x, a fixed point.

Theorem 2.3. Ourside a fixed point (that is in any small open set not containing a
fixed point) any smooth flow is locally trivial, in the sense that there exists a coordi-
nate change for which (2.2) rakes the formy = A, where A is the constant column
vector with d components: A = (1,0,...,0). (Furthermore, if (2.2) is a Hamil-
tonian equation, the coordinate change can be chosen to be canonical (Darboux’
theporem).)
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Fig. 2.1. Stereo picture for the flow of (2.1) for v = 0. These pictures give a 3-dimensional
effect if one “stares™ at them to bring images of the two cylinders to convergence. The stable
equilibrium point is in the front (to the left) and the unstable one is in the back of the cylinder.
The black lines show short pieces of orbit. These pieces start at the dot and extend along the
short lines

Fig. 2.2. The same view for a subcritical «y. The value isy = 0.25
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Fig. 2.4. Supercritical damping. The value is v = 2.2



