kg Tt E Gt AR

Charles Van Loan =

TSINGHUA sia:n_

UNIVERSITY PRESS

Computational Frameworks for
the Fast Fourier Transform

ik 4 2ot X Bt K42 R

Charles Van Loan =2

TSAINGHUA siam
JER

Charles Van Loan
Computational Frameworks for the Fast Fourier Transform
ISBN:0-898712-85-8

Copyright © 1992 by SIAM.

Original American edition published by SIAM: Society for Industrial and Applied Mathematics,
Philadelphia, Pennsylvania. All Rights Reserved.
A BB HSIAME IR, [RITA, BERLI.,

Tsinghua University Press is authorized by SIAM to publish and distribute exclusively this English
language reprint edition. This edition is authorized for sale in the People’s Republic of China only
(excluding Hong Kong, Macao SAR and Taiwan). Unauthorized export of this edition is a violation
of the Copyright Act. No part of this publication may be reproduced or distributed by any means, or
stored in a database or retrieval system, without the prior written permission of the publisher.

A IR EN R B SIAMIBBALE £ A2 IR R HRR & 1T BERRAURZEh & AR £ E R
(FEFPEEE, RIBMTHERRIESEBEX) 4, RSEBRHASYHODBHRDE
ERSUERIT A, REHBEREBENT, FEUEATREHHZTESHETHS,

AT RRBUREENSFIRIES B 01-2008-0782
REWUERE, BEDW 3T, 2EMAIF: 010-62782989 13701121933
E-HER&E (CIP) ¥iiE

P MR i B AHESR = Computational Frameworks for the Fast Fourier Transform: %
X/ (F) BB (LoanC. V.) F.-- BEIA. - bR HEEHEH, 2011.2
(EREZHCERSE)

ISBN 978-7-302-24497-4

I. O 0. 0% 0. OBEMZH-%EX N. D017422
T E AR B ECIPEEZ T (2011) $50065865

RS, B

P, THE

HAR& T %% :] i L ERREEHRE A MK
http: /www. tup. com. cn i1 #. 100084
t ,% #Hl: 010-62770175 HB M. 010-62786544

BBEIZERSE . 010-62776969, c-service@ tup. tsinghua. edu. cn
B R’ K . 010-62772015,zhiliang@tup. tsinghua. edu. cn

L EE SR

: REFEBE

: 175X 245 EI . 18.25

20112 A IR Ep W 20114 2 AL WEIR

: 1~3000

: 39.00 J6

X N &k

7= 4B . 027808-01

Preface

The fast Fourier transform (FFT) is one of the truly great computational devel-
opments of this century. It has changed the face of science and engineering so much
so that it is not an exaggeration to say that life as we know it would be very different
without the FFT.

Unfortunately, the simplicity and intrinsic beauty of many FFT ideas are buried
in research papers that are rampant with vectors of subscripts, multiple summations,
and poorly specified recursions. The poor mathematical and algorithmic notation has
retarded progress and has led to a literature of duplicated results. I am convinced
that life as we know it would be considerably different if, from the 1965 Cooley-Tukey
paper onwards, the FFT community had made systematic and heavy use of matriz-
vector notation! Indeed, by couching results and algorithms in matrix/vector notation,
the FFT literature can be unified and made more understandable to the outsider. The
central theme in this book is the idea that different FFT algorithms correspond to
different factorizations of the discrete Fourier transform (DFT) matrix. The matrix
factorization point of view, so successful in other areas of numerical linear algebra,
goes a long way toward unifying and simplifying the FFT literature. It closes the gap
between the computer implementation of an FFT and the underlying mathematics,
because it forces us to think well above the scalar level.

By approaching the FFT matrix/vector terms, the algorithm can be used as a
vehicle for studying key aspects of advanced scientific computing, e.g., vectorization,
locality of reference, and parallelization. The FFT deserves to be ranked among the
great teaching algorithms in computational science such as Gaussian elimination, the
Lanczos process, binary search, etc.

I would like to thank a number of colleagues and students for helping to make
this book possible. This manuscript began as a set of class notes for a vector-parallel
FFT course taught at Cornell in the spring of 1987. The contributions of all the
students, especially Clare Chu, Yi-Zhong Wu, Anne Elster, and Nihal Wijeyesekera,
are gratefully acknowledged. Clare Chu went on to write a beautiful thesis in the area
that has been of immense help to me during the writing of §§1.4, 3.5, 4.3, and 4.4.

Sid Burrus’s March 1990 visit to Cornell rejuvenated my interest in the manuscript,
which at that time had been dormant for a number of years. [arranged to give a second
edition of the FFT course during the fall of that year. Among the attendees who put
up with my revisions and expansions of the earlier manuscript, Richard Huff, Wei Li,
Marc Parmet, and Stephan Parrett deserve special mention for their contributions to
the finished volume. I am also indebted to Dave Bond, Bill Campbell, Greg Henry,
Ricardo Pomeranz, Dave Potyondy, and Dean Robinson.

I also wish to thank Chris Paige and Clement Pellerin of McGill University and
Lennart Johnsson of Thinking Machines for reading portions of the text and making
many corrections and valuable suggestions.

In addition, I would like to acknowledge the financial suppport of the Army Re-

ix

X PREFACE

search Office through the Mathematical Sciences Institute (MSI) at Cornell. With
the help of the MSI, I was able to organize a workshop on the FFT during the spring
of 1987. More recently, I was supported during the summer of 1990 by grants to the
Cornell Computational Optimization Project from the Office of Naval Research and
the National Science Foundation. During this time, the manuscript was considerably
refined.

Finally, I am indebted to Cindy Robinson-Hubbell at the Advanced Computing
Research Institute at Cornell for overseeing the production of the camera-ready copy
and to Crystal Norris at SIAM for a superb job of copyediting and managing the
whole project.

Preliminary Remarks

References

Annotated bibliographies are given in each section and a master list of references
is supplied at the end of the book. We offer a few general bibliographic remarks here
at the outset, beginning with the following list of good background texts:

R.E. Blahut (1984). Fast Algorithms for Digital Signal Processing, Addison-Wesley, Reading,
MA.

R.N. Bracewell (1978). The Fourier Transform and Its Applications, McGraw-Hill, New
York.

E.O. Brigham (1974). The Fast Fourier Transform, Prentice-Hall, Englewood Cliffs, NJ.

E.O. Brigham (1988). The Fast Fourier Transform and Its Applications, Prentice-Hall, En-
glewood Cliffs, NJ.

C.S. Burrus and T. Parks (1985). DFT/FFT and Convolution Algorithms, John Wiley &
Sons, New York.

H.J. Nussbaumer (1981b). Fast Fourier Transform and Convolution Algorithms, Springer-
Verlag, New York.

The bibliography in Brigham (1988) is particularly extensive. The researcher may
also wish to browse through the 2000+ entries in

M.T. Heideman and C.S. Burrus (1984). “A Bibliography of Fast Transform and Convo-
lution Algorithms,” Department of Electrical Engineering, Technical Report 8402, Rice
University, Houston, TX.

A particularly instructive treatment of the Fourier transform may be found in

G. Strang (1987). Introduction to Applied Mathematics, Wellesley-Cambridge Press, Welles-
ley, MA.

The books by Brigham contain ample pointers to many engineering applications of
the FFT. However, the technique also has a central role to play in many “traditional”
areas of applied mathematics. See

J.R. Driscoll and D.M. Healy Jr. (1989). “Asymptotically Fast Algorithms for Spherical and
Related Transforms,” Technical Report PCS-TR89-141, Department of Mathematics and
Computer Science, Dartmouth College.

M.H. Gutknecht (1979). “Fast Algorithms for the Conjugate Periodic Function,” Computing
22, 79-91.

P. Henrici (1979). “Fast Fourier Methods in Computational Complex Analysis,” SIAM Rev.
21, 460-480.

T.W. Kérner (1988). Fourier Analysis, Cambridge University Press, New York.

xi

xii PRELIMINARY REMARKS

The FFT has an extremely interesting history. For events surrounding the publication
of the famous 1965 paper by Cooley and Tukey, see

J.W. Cooley (1987). “How the FFT Gained Acceptance,” in History of Scientific Computing,
S. Nash (ed.), ACM Press, Addison-Wesley, Reading, MA.

J.W. Cooley, R.L. Garwin, C.M. Rader, B.P. Bogert, and T.G. Stockham Jr. (1969). “The
1968 Arden House Workshop on Fast Fourier Transform Processing,” IEEE Trans. Audio
Electroacoustics AU-17, 66-T6.

J.W. Cooley, P.A. Lewis, and P.D. Welch (1967). “Historical Notes on the Fast Fourier
Transform,” IEEE Trans. Audio and Electroacoustics AU-15, 76-79.

However, the true history of the FFT idea begins with (who else!) Gauss. For a
fascinating account of these developments read

M.T. Heideman, D.H. Johnson, and C.S. Burrus (1985). “Gauss and the History of the Fast
Fourier Transform,” Arch. Hist. Exact Sci. 84, 265-277.

History of Factorization Ideas

The idea of connecting factorizations of the DFT matrix to FFT algorithms has a
long history and is not an idea novel to the author. These connections are central to
the book and deserve a chronologically ordered mention here at the beginning of the
text:

I. Good (1958). “The Interaction Algorithm and Practical Fourier Analysis,” J. Roy. Stat.
Soc. Ser. B, 20, 361-372. Addendum, J. Roy. Stat. Soc. Ser. B, 22, 372-375.

E.O. Brigham and R.E. Morrow (1967). “The Fast Fourier Transform,” IEEE Spectrum 4,
63-70.

W.M. Gentleman (1968). “Matrix Multiplication and Fast Fourier Transforms,” Bell System
Tech. J. 47, 1099-1103.

F. Theilheimer (1969). “A Matrix Version of the Fast Fourier Transform,” IEEE Trans.
Audio and Electroacoustics AU-17, 158-161.

D.K. Kahaner (1970). “Matrix Description of the Fast Fourier Transform,” IEEE Trans.
Audio and Electroacoustics AU-18, 442-450.

M.J. Corinthios (1971). “The Design of a Class of Fast Fourier Transform Computers,” I[EEE
Trans. Comput. C-20, 617-623.

M. Drubin (1971a). “Kronecker Product Factorization of the FFT Matrix,” IEEE Trans.
Comput. C-20, 590-593.

L.J. Good (1971). “The Relationship between Two Fast Fourier Transforms,” IEEE Trans.
Comput. C-20, 310-317.

P.J. Nicholson (1971). “Algebraic Theory of Finite Fourier Transforms,” J. Comput. System
Sci. 5, 524-527. .

A. Rieu (1971). “Matrix Formulation of the Cooley and Tukey Algorithm and Its Extension,”
Revue Cethedec 8, 25-35.

B. Ursin (1972). “Matrix Formulations of the Fast Fourier Transform,” IEEE Comput. Soc.
Repository R72-42.

H. Sloate (1974). “Matrix Representations for Sorting and the Fast Fourier Transform,”
IEEE Trans. Circuits and Systems CAS-21, 109-116.

D.J. Rose (1980). “Matrix Identities of the Fast Fourier Transform,” Linear Algebra Appl.
29, 423-443.

C. Temperton (1983). “Self-Sorting Mixed Radix Fast Fourier Transforms,” J. Comput.
Phys. 52, 1-23.

V.A. Vlasenko (1986). “A Matrix Approach to the Construction of Fast Multidimensional
Discrete Fourier Transform Algorithms,” Radioelectron. and Commun. Syst. 29, 87-90.

PRELIMINARY REMARKS xiii

D. Rodriguez (1987). On Tensor Product Formulations of Additive Fast Fourier Transform
Algorithms and Their Implementations, Ph.D. Thesis, Department of Electrical Engineer-

ing, The City College of New York, CUNY.

R. Tolimieri, M. An, and C. Lu (1989). Algorithms for Discrete Fourier Transform and
Convolution, Springer-Verlag, New York.

H.V. Sorensen, C.A. Katz, and C.S. Burrus (1990). “Efficient FFT Algorithms for DSP
Processors Using Tensor Product Decomposition,” Proc. ICASSP-90, Albuquerque, NM.

J. Johnson, R.W. Johnson, D. Rodriguez, and R. Tolimieri (1990). “A Methodology for
Designing, Modifying, and Implementing Fourier Transform Algorithms on Various Ar-
chitectures,” Circuits, Systems, and Signal Processing 9, 449-500.

Software

The algorithms in this book are formulated using a styiized version of the Matlab
language which is very expressive when it comes to block matrix manipulation. The
reader may wish to consult

M. Metcalf and 1. Reid (19906). Fortran 90 Ezplained, Oxford University Press, New York

for a discussion of some very handy array capabilities that are now part of the modern
Fortran language and which fit in nicely with our algorithmic style.

We stress that nothing between these covers should be construed as even approxi-
mate production code. The best reference in this regard is to the package FFTPACK
due to Paul Swarztrauber and its vectorized counterpart, VFFTPACK due to Roland
Sweet. This software is available through netlib. A message to netlib@ornl.gov with
a message of the form “send index for FFTPACK” or “send index for VFFTPACK”
will get you started.

Contents

Preface x
Preliminary Remarks xi
1 The Radix-2 Frameworks 1

Pt ekt emd ek et et et ek
WA =3 MO b N

Matrix Notation and Algorithms 2

The FFT Idea 11

The Cooley-Tukey Radix-2 Factorization 17
Weight and Butterfly Computations 22

Bit Reversal and Transposition 36

The Cooley-Tukey Framework 44

The Stockham Autosort Frameworks 49

The Pease Framework 60

Decimation in Frequency and Inverse FFTs 64

General Radix Frameworks 76

XECECECR)
[, 3 G TR O (V)

General Radix Ideas 76

Index Reversal and Transposition 84
Mixed-Radix Factorizations 95
Radix-4 and Radix-8 Frameworks 101
The Split-Radix Framework 111

High-Performance Frameworks 121

o

31 The Multiple DFT Problem 122

3.2 Matrix Transposition 125

33 The Large Single-Vector FFT Problem 139
3.4 The Multidimensional FFT Problem 148
35 Distributed-Memory FFTs 156

3.6 Shared-Memory FFTs 176

4 Selected Topics ' 188
4.1 Prime Factor Frameworks 188

4.2 Convolution 205

4.3 FFTs of Real Data 215

4.4 Fast Trigonometric Transforms 229

4.5 Fast Poisson Solvers 247

Bibliography 259

Index 269

Chapter 1

The Radix-2 Frameworks

§1.1 Matrix Notation and Algorithms

§1.2 The FFT Idea

§1.3 The Cooley-Tukey Radix-2 Factorization
§1.4 Weight and Butterfly Computations

§1.5 Bit Reversal and Transposition

§1.6 The Cooley-Tukey Framework

§1.7 The Stockham Autosort Frameworks

§1.8 The Pease Framework

§1.9 Decimation in Frequency and Inverse FFTs

A fast Fourier transform (FFT) is a quick method for forming the matrix-vector
product F,z, where F, is the discrete Fourier transform (DFT) matrix. Our exam-
ination of this area begins in the simplest setting: the case when n = 2!. This per-
mits the orderly repetition of the central divide-and-conquer process that underlies all
FFT work. Our approach is based upon the factorization of F, into the product of
t = log, n sparse matrix factors. Different factorizations correspond to different FFT
frameworks. Within each framework different implementations are possible.

To navigate this hierarchy of ideas, we rely heavily upon block matrix notation,
which we detail in §1.1. This “language” revolves around the Kronecker product
and is used in §1.2 to establish the “radix-2 splitting,” a factorization that indicates
how a 2m-point DFT can be rapidly determined from a pair of m-point DFTs. The
repeated application of this process leads to our first complete FFT procedure, the
famous Cooley-Tukey algorithm in §1.3.

Before fully detailing the Cooley—Tukey process, we devote §§1.4 and 1.5 to a num-
ber of important calculations that surface in FFT work. These include the butterfly
computation, the generation of weights, and various data transpositions. Using these
developments, we proceed to detail the in-place Cooley-Tukey framework in (§1.6).
In-place FFT procedures overwrite the input vector with its DFT without making use
of an additional vector workspace. However, certain data permutations are involved
that are sometimes awkward to compute. These permutations can be avoided at the
expense of a vector workspace. The resulting in-order FFTs are discussed in §1.7,

1

2 CHAPTER 1. THE RADIX-2 FRAMEWORKS

where a pair of autosort frameworks are presented. A fourth framework due to Pease

is covered in §1.8.

Associated with each of these four methods is a different factorization of the DFT
matrix. As we show in §1.9, four additional frameworks are obtained by transposing
these four factorizations. A fast procedure for the inverse DFT can be derived by
conjugating any of the eight “forward” DFT factorizations.

1.1 Matrix Notation and Algorithms

The DFT is a matrix-vector product that involves a highly structured matrix. A
description of this structure requires the language of block matrices with an emphasis
on Kronecker products. The numerous results and notational conventions of this
section are used throughout the text, so it is crucial to have a facility with what
follows.

1.1.1 Matrix/Vector Notation

We denote the vector space of complex n-vectors by C€", with components indexed
from zero unless otherwise stated. Thus,

e = x:[“].
. EA

For m-by-n complex matrices we use the notation €™*". Rows and columns are
indexed from zero, e.g.,

AECQXS = A= [GOO Go1 002]_

a10 G117 a)2

From time to time exceptions to the index-from-zero rule are made. These occasions
are rare and the reader will be amply warned prior to their occurrence.

Real n-vectors and real m-by-n matrices are denoted by IR® and IR™*", respec-
tively. _

If A = (ag;), then we say that a;; is the (&, j) entry of A. Sometimes we say the
same thing with the notation [A]s;. Thus, if a is a scalar then [aA]x; = aay;.

The conjugale, the iranspose, and the conjugate transpose of an m-by-n complex
matrix A = (a;;) are denoted as follows:

A = (@) (mbym),
AT = (aji) (n-by-m),
AR = (@) (n-by-m) .

The inverse of a nonsingular matrix A € C**" is designated by A~!. The n-by-n
identity is denoted by I,. Thus, AA-' = A-'4A = I,.

1.1.2 The Discrete Fourier Transform

The discrete Fourter transform (DFT) on C" is a matrix-vector product. In particular,
vy=1[yo,...,Un_1]T isthe DFT of £ = [z0,...,Zn_1]T iffor k= 0,...,n —1 we have

n-1
v = Zu:jzj, (1.1.1)
i=0

1.1. MATRIX NOTATION AND ALGORITHMS 3

where
wp = cos(2r/n) — isin (27 /n) = exp (—27i/n) ,

and i? = —1. Note that w,, is an nth root of unity: w? = 1.

In the FFT literature, some authors set w, = exp(2xi/n). This does not seriously
affect any algorithmic or mathematical development. Another harmless convention
that we have adopted is not to scale the summation in (1.1.1) by 1/n, a habit shared
by other authors.

In matrix-vector terms, the DFT as defined by (1.1.1) is prescribed by

y = Fﬂzy
where
Fn = (fpq) fpqg = Wi = exp(—27pqi/n) (1.1.2)

is the n-by-n DFT matriz. Thus,
1 1 1 1
1 1 I - -1 i
Fl—-[]], Fz—[l _1], and Fq-— 1 -1 1._1
1 i -1 i

1.1.3 Some Properties of the DFT Matrix

We say that A € €**" is symmetric if AT = A and Hermitian if A¥ = A. As an
exercise in our notation, let us prove a few facts about F,, that pertain to these
properties. The first result concerns some obvious symmetries.

Theorem 1.1.1 The matriz F, is symmelric.

Proof. [F])jx =wh =wif = [Fa)je. O

Note that if n > 2, then F, is not Hermitian. Indeed, F = F'T = F, . However, if
n =1 or 2, then F, is real and so F; and F, are Hermitian.

Two vectors z,y € C” are orthogonal if zHy = 0. The next result shows that the
columns of F,, are orthogonal.

Theorem 1.1.2 FF, = nl,.

-Proof. If pp, is the inner product of columns p and q of F,, then by setting w = wy,
we have
-1 n-1
Hpg = Z(Q"”)w"’ = Zw"(""’).
k=0 k=0
If ¢ = p, then ppy = n. Otherwise, w?=? # 1, and it follows from the equation
n-1 n
(1 — w9 Py, = Zw"(""’) — Zwk(q—r?) = 1 —wi-P) = ¢
k=0 k=1

that gp, = 0 whenever ¢ #p. O

We say that Q € C**" is unitary if @Q~! = QY. From Theorem 1.1.2 we see that
Fn/+/n is unitary. Thus, the DFT is a scaled unitary transformation on C".

4 CHAPTER 1. THE RaDix-2 FRAMEWORKS
1.1.4 Column and Row Partitionings
1f A € C™*"™ and we designate the kth column by a,, then

A =lalar] - lan-1), ee€™,

is a column partitioning of A. Thus, if A = F,, and w = wy,, then

1
ok
ey =
wk(n=1)
Likewise,
b5
7
A= X , e,

b1

is a row partitioning of A € C™*". Again, if A = F,, then

T = [1, u*,...,w*("-l)] .

1.1.5 Submatrix Specification

Submatrices of A € €™*" are specified by the notation A(u, v), where u and v are in-
teger row vectors that “pick out” the rows and columns of A that define the submatrix.
Thus, ifu=[02]),v=[013]), and B = A(u,v), then

B = Qo0 401 Qo3
G20 G217 Q23

Sufficiently regular index vectors u and v can be specified with the colon notation:
u=kj & u=[k k+1,...,7] k<j.

Thus, A(2:4,3:7) is a 3-by-5 submatrix defined by rows 2, 3, and 4 and columns 3, 4,
5, 6, and 7. There are some special conventions when entire rows or columns are to
be extracted from the parent matrix. In particular, if A € €™*", then

A(u,:) & A(u,0:n-—-1),
A(,v) & A0:m —1,v).

Index vectors with nonunit increments may be specified with the notation i:j:k,
meaning count from i to k in steps of length j. This means that A(0:2:m — 1,:) is
made up of A’s even-indexed rows, whereas A(:,n — 1:—1:0) is A with its columns in
reverse order. If A = [agla1 | - - |a31], then A(:,3:4:21) = [a3 | a7 | a1y | 815 | @19).

1.1. MATRIX NOTATION AND ALGORITHMS 5

1.1.6 Block Matrices

Column or row partitionings are examples of matrix blockings. In general, when we
write

Aco ... Aog-1 myg
A= : : : (1.1.3)
Ap—10 7 Aporgr Mp_)
np s Mg

we are choosing to regard A as a p-by-¢ block matrix where the block A; is an
my-by-n; matrix of scalars.

The notation for block vectors is similar. Indeed, if ¢ = 1 in (1.1.3), then we say
that A is a p-by-1 block vector.

The manipulation of block matrices is analogous to the manipulation of scalar
matrices. For example, if A = (A;;) is a p-by-q block matrix and B = (B;;) is a ¢-by-r
block matrix, then AB = C = (C};) can be regarded as a p-by-r block matrix with

C,,j = A),oBo,‘ +.-- Ak.q—lBg—lJ'

assuming that all of the individual matrix-matrix multiplications are defined.

Partitioning a matrix into equally sized blocks is typical in FFT derivations. Thus,
ifmg=-.-.=mp_y =vandng=-.-=ny_; = 9 in equation (1.1.3), then Ay =
Alkvi(k+ 1)v - 1,in:(j + 1)y = 1).

1.1.7 Regarding Vectors as Arrays

The reverse of regarding a matrix as an array of vectors is to take a vector and arrange
it into a matrix. If £ € € and n = re, then by z,x. we mean the matrix

Trxe = [2(0:r— 1) 2(r:2r—-1)| ... [z(n—rin—1)] € C"*°,

ie., [£rxc)e; = zjr4r. For example, if z € C'2, then

To Ta ZTg IT9

I3x4 = 1 T4 Z7 T10 .

T2 I3 ZTg Ty

The colon notation is also handy for describing the columns of 2T, .
2l . = [2(0rn~1) | 2(lirin=1)] - .. |z(r — Iirin~1)] .

Thus,
o I3 X2
T3 T4 s

Te ZT7 T8
T9 Ti0 In

x4 = = [2(0:3:11) | 2(1:3:11) | 2(2:3:11)]..

Suppose z € € with n = re¢. In the context of an algorithm, it may be useful for
the sake of clarity to identify z € € with a doubly subscripted array X (0:r—1,0:c—1).
Consider the operation b — b + z,x.a, where a € C°, beC, and “~" designates
assignment. The doubly subscripted array formulation

8 CHAPTER 1. THE RaDix-2 FRAMEWORKS

X(0:r—1,0:c—1) = z,x.
for k=0:r-1
for j=0:c-1
b(k) — b(k) + X(k, j)a(’)
end
end

is certainly clearer than the following algorithm, in which z is referenced as a vector:

fork=0r-1
for j =0:c-1
b(k) — b(k) + =(jr + E)a(j)
end
end

Our guiding philosophy is to choose a notation that best displays the underlying
computations.

Finally, we mention that a vector of length n = n; - - .n, can be identified with a
t-dimensional array X(0:n; ~1,...,0:n; — 1) as follows:

X(ay,...,aq) = z(a1 +azNa + -+ as Ny).

Here, Ny = ny---ng.1. In multidimensional settings such as this, components are
indexed from one.

1.1.8 Permutation Matrices

An n-by-n permutation matrix is obtained by permuting the columns of the n-by-n
identity I,,. Permutations can be represented by a single integer vector. In particular,
if v is a reordering of the vector 0:n — 1, then we define the permutation P, by

P, = I,(:,v).
Thus, if v={0, 3, 1, 2], then
1 000
P=10001
0100

The action of P, on a matrix A € €**"” can be neatly described in terms of v and the
colon notation:

AP, = A(,v),
PTA = A(v,).

It is easy to show that PT P, = I,(v,:),(:,v) = I, and that

P, = Ia(:,v) = PT =I,(;,w), w(v)=0n-1. (1.1.4)

1.1. MATRIX NOTATION AND ALGORITHMS 7

1.1.9 Diagonal Scaling and Pointwise Multiplication

If d € €, then D = diag(d) = diag(dp, ...,d,-3) is the n-by-n diagonal matrix with
diagonal entries do, .. .,dn-1. The application of D to an n-vector z is tantamount to
the pointwise multsplication of the vector d and the vector z, which we designate by
d.xz:

y=Dz=diag(d)s & y=dsxz & y =dz;.

More generally, if A, B € €™*", then the pointwise product of (c;;) =C =A .*Bis
defined by ci, = ai,bs,. It is not hard to show that A .« B =B .+« A and (4 .+ B)Y =
AH + BH,

A few additional diagonal matrix notations are handy. If A € €**", then diag(A)
is the n-vector [ago, @11, ... @n_1,n-1]7. If Dy,..., Dp_; are matrices, then D =
diag(Do,.. , Dp_1) is the p-by-p block diagonal matrix defined by

DO 0 0
0 D ... 0
D =
o 0 .. b,

1.1.10 Kronecker Products

The block structures that arise in FFT work are highly regular and a special notation
is in order. If A € C”*? and B € €™*", then the Kronecker product A® B is the
p-by-q block matrix

agoB v ao)¢_13
A®B = : : € ¢rmxm,
ap_l,oB a,,_llq_lB
Note that
B 0 0
0 B 0
In ® B = .
o 0 ... B

is block diagonal.

A number of Kronecker product properties are heavily used throughout the text
and are listed inside the front cover for convenience. Seven Kronecker facts are required
in this chapter and they are now presented. The first four results deal with products,
transposes, inverses, and permutations.

If A, B, C, and D are matrices, then
(A®B)(C®D)=(AC)® (BD),

assuming that the ordinary multiplications AC and BD are defined.

If A and B are nonsingular matrices, then A® B s nonstngular and (A ® B)-!' =
A-t'® B-!

8 CHAPTER 1. THE RaADIX-2 FRAMEWORKS

If A and B are matrices, then (A® B)T = AT ® BT,

If P and Q are permutations, then so is P ® Q.

The first property says that the product of Kronecker products is the Kronecker prod-
uct of the products. The second property says that the inverse of a Kronecker product
is the Kronecker product of the inverses. The third property shows that the trans-
pose of a Kronecker product is the Kronecker product of the transposes in the same
order. The fourth property asserts that the Kronecker product of two permutations
is a permutation.

These results are not hard to verify. For example, to establish Kronl when all
the matrices are n-by-n, define U = A® B, V=C®D,and W =UV. Let Ui, Vj,
and W;; be the kj blocks of these matrices. It follows that

n-1 n-1
Wiy = ZngV;j = Z(“HB)(%D)

¢=0 q=0
n-1
= (Za,,,c,,-) BD = [AC)|;BD.
¢=0

This shows that W is the conjectured Kronecker product.

The next two Kronecker properties show that matrix-vector products of the form
2=(I® A or z = (A® I)v are “secretly” matrix-matrix multiplications.

IfA€C™" and z € Q" with n = rc, then

v= (I ®A)z & Yrxe= Az

IfA€C* and z € C" withn = rc, then
y=(A® L)z & yrx. = zr)u:AT-

The proofs of Kron5 and Kron6 are routine subscripting arguments. The last Kro-
necker property that we present in this section is a useful corollary of Kronl.

If A is a matriz, then

L® (I,®A) = [,,®A.

_A number of other, more involved Kronecker facts are required for some Chapter 2
derivations. See §2.2.1.

