PEARSON
A

Addison
Wesley

Object—Oriented Modeling and Design

i Dk G 5

(S EIAR)

[2] James Rumbaugh % %

- UML ¢l#8 A Z— Rumbaugh {Efm =
NBSFILTHTE. BIHEISELE »
KEWGIF. SIMTHULEN =

() 4.0 €44 b <t

www infobower com cn

E B R & #® ¥

I] 0 AR 5 UL

(R ERAR)

TD RS G A 4

Object-Oriented Modeling and Design (ISBN 0-13-629841-9)

James Rumbaugh, Michael Blaha , William Premerlani, Frederick Eddy, William Lorensen

Copyright © 1991 Prentice-Hall, Inc.

Original English Language Edition Published by Prentice-Hall, Inc.

All rights reserved.

Reprinting edition published by PEARSON EDUCATION ASIA LTD and CHINA ELECTRIC
POWER PRESS, Copyright © 2003.

AASRENR i Pearson Education $ALF H i Jy AR EBA (B, MITRHAITHREM S
EHIKERSL) MR, RAT.
REHIRE BE VAT, RELUUEM T AR S RABREATH S

AP A Pearson Education Bith iR, THEEANBHE.
ERMERBEEEGREILS: BT 01-2003-1012

For sale and distribution in the People’s Republic of China exclusively(except Taiwan, Hong Kong
SAR and Macao SAR).

Tt ARIMEREY CREFEREES. WK A EEBHE) S8 KT

KBERKE (CIP) #iiE

HRMBEES R/ (F) WlESE. 2ok, —txr. hEEHERE, 2003
(RIRRBEFEFD ’

ISBN 7-5083-1810-2

... 3. [NLEAENRIES, UML—EF&IT—%EX V.TP312

W E R A 518 CIP $dB % 5 (2003) 28 090601 5

AN F 4 RRRERT
B A HRNREESRT GEBBD
£ Z: (&%) James Rumbaugh %
TSRS Phith
HRRRAT . o E L AR
bk R =RHEES HEBURES: 100044

Bi%: (010D 88515918 fEE: (010) 88518169
B B JEEREFEERIT
A& 787X1092 1/16 =] 7k 32.25 i m: 2
E: ISBN 7-5083-1810-2
R R: 20041 HIEHBIR 200441 H 28 1R EN A

E #r: 59.00 JC
BETE BELR

Object-Oriented
Modeling and Design

James Rumbaugh
Michael Blaha
William Premerlani
Frederick Eddy
William Lorensen

Preface

This book presents an object-oriented approach to software development based on modeling
objects from the real world and then using the model to build a language-independent design
organized around those objects. Object-oriented modeling and design promote better under-
standing of requirements, cleaner designs, and more maintainable systems. We describe a set
of object-oriented concepts and a language-independent graphical notation, the Object Mod-
eling Technique, that can be used to analyze problem requirements, design a solution to the
problem, and then implement the solution in a programming language or database. Our ap-
proach allows the same concepts and notation to be used throughout the entire software de-
velopment process. The software developer does not need to translate into a new notation at
each development stage as is required by many other methodologies.

We show how to use object-oriented concepts throughout the entire software life cycle,
from analysis through design to implementation. The book is not primarily about object-ori-
ented languages or coding. Instead we stress that coding is the last stage in a process of de-
velopment that includes stating a problem, understanding its requirements, planning a
solution, and implementing a program in a particular language. A good design technique de-
fers implementation details until later stages of design to preserve flexibility. Mistakes in the
front of the development process have a large impact on the ultimate product and on the time
needed to finish. We describe the implementation of object-oriented designs in object-orient-
ed languages, non-object-oriented languages, and relational databases.

The book emphasizes that object-oriented technology is more than just a way of pro-
gramming. Most importantly, it is a way of thinking abstractly about a problem using real-
world concepts, rather than computer concepts. This may be a difficult transition for some
people because older programming languages force one to think in terms of the computer

Xi

xii PREFACE

and not in terms of the application. Books that emphasize object-oriented programming of-
ten fail to help the programmer learn to think abstractly without using programming con-
structs. We have found that the graphical notation that we describe helps the software
developer visualize a problem without prematurely resorting to implementation.

We show that object-oriented technology provides a practical, productive way to devel-
op software for most applications, regardless of the final implementation language. We take
an informal approach in this book; there are no proofs or formal definitions with Greek let-
ters. We attempt to foster a pragmatic approach to problem solving drawing upon the intui-
tive sense that object-oriented technology captures and by providing a notation and
methodology for using it systematically on real problems. We provide tips and examples of
good and bad design to help the software developer avoid common pitfalls. To illustrate the
pragmatic nature of these concepts, we describe several real applications developed by the
authors using object-oriented techniques.

This book is intended for both software professionals and students. The reader will learn
how to apply object-oriented concepts to all stages of the software development life cycle.
‘At present, there are few, if any, object-oriented books covering the entire life cycle, as op-
posed to programming or analysis alone. In fact, there are few textbooks on object-oriented
technology of any kind. Although object-oriented technology is currently a “hot” topic, most
readers have limited experience with it, so we do not assume any prior knowledge of object-
oriented concepts. We do assume that the reader is familiar with basic computing concepts,
but an extensive formal background is not required. Even existing object-oriented program-
mers will benefit from learning how to design programs systematically; they may be sur-
prised to discover that certain common object-oriented coding practices violate principles of
good design.

The database designer will find much of interest here. Although object-oriented pro-
gramming languages have previously received the most attention, object-oriented design of
databases is perhaps even more compelling and immediately practical. We include an entire
chapter describing how to implement an object-oriented design using existing relational da-
tabase management systems.

This book can be used as a textbook for a graduate or advanced undergraduate course
on software engineering or object-oriented technology. It can be used as a supplementary
text for courses on databases or programming languages. Prerequisites include exposure to
modern structured programming languages and a knowledge of basic computer science
terms and concepts, such as syntax, semantics, recursion, set, procedure, graph, and state;
a detailed formal background is not required. Exercises of varying difficulty are included in
each chapter along with selected answers at the back of the book.

Many object-oriented books primarily discuss programming issues, usually from the
point of view of a single language. The best of them discuss design issues, but they are nev-
ertheless mainly about programming. Fewer books address object-oriented analysis or de-
sign. We show that object-oriented concepts can and should be applied throughout the entire
software life cycle. Recently books on object-oriented methodology have begun to appear.
Our book is compatible with other books on object-oriented analysis and design, and we feel
that it is complementary to them in content.

PREFACE Xiii

Several existing books on software methodology discuss the entire life cycle from a pro-
cedural viewpoint. The traditional data flow methodologies of DeMarco, Yourdon, and oth-
ers are based mainly on functional decomposition, although recent revisions have been
influenced by object-oriented concepts. Even Jackson’s methodology, which superficially
seems to be based on objects, quickly reverts to procedural issues.

Our emphasis differs in some respects from the majority of the object-oriented program-
ming community but is in accord with the information modeling and design methodology
communities. We place a much greater emphasis on object-oriented constructs as models of
real things, rather than as techniques for programming. We elevate interobject relationships
to the same semantic level as classes, rather than hiding them as pointers inside objects. We
place somewhat less importance on inheritance and methods. We downplay fine details of
inheritance mechanisms. We come down strongly in favor of typing, classes, modeling, and
advance planning. We use terminology that is universally accepted when possible, otherwise
we try to choose the best terms among various alternatives. There is as yet no commonly ac-
cepted graphical notation for object-oriented constructs, so despite concerns about introduc-
ing “yet another notation” we use our own Object Modeling Technique notation, which we
have used extensively on real problems and which has been successfully adopted by others.
In any case, the object-oriented concepts themselves are the most important thing, not the
shape of the symbols used to represent them. We also show how to apply object-oriented
concepts to state machines.

The book contains four parts. Part 1 presents object-oriented concepts in a high-level,
language-independent manner. These concepts are fundamental to the rest of the book, al-
though advanced material can be skipped initially. The Object Modeling Technique notation
is introduced in Part 1 and used throughout the book to show examples. Part 2 describes a
step-by-step object-oriented methodology of software development from problem statement
through analysis, system design, and object design. All but the final stages of the methodol-
ogy are language-independent; even object design is concerned mostly with issues indepen-
dent of any particular language. Part 3 describes the implementation of object-oriented
designs in various target environments, including object-oriented languages, non-object-ori-
ented languages, and relational databases. It describes the considerations applicable to dif-
ferent environments, although it is not intended to replace books on object-oriented
programming. Part 4 presents case studies of actual object-oriented applications developed
by the authors at the General Electric Research and Development Center. The problems cov-
er a range of application domains and implementation targets.

The authors have used object-oriented analysis, design, programming, and database
modeling for several years on a variety of applications. We have also implemented an object-
oriented language, developed an object-oriented notation and methodology, and developed
object-oriented support tools, so we are familiar with both theoretical and pragmatic issues
of implementing and using object-oriented technology. We are enthusiastic about the object-
oriented approach and have found that it is applicable to almost any kind of application. We
have found that the use of object-oriented concepts, together with a graphical notation and a
development methodology, can greatly increase the quality, flexibility, and understandability
of software. We hope that this book can help to get that message across.

Xiv PREFACE

ACKNOWLEDGMENTS

We wish to thank the many individuals who have made this book possible. We especially
want to thank GE and our management at the Research and Development Center for their
foresight in giving us the opportunity to develop the ideas presented here by working on ob-
ject-oriented technology when it was still a new and unproven field as well as for their sup-
port, encouragement, and facilities in writing the book. We also wish to thank our colleagues
at GE who worked with us in exploring this exciting new field. We acknowledge the impor-
tant contribution of Mary Loomis and Ashwin Shah, who participated in the original devel-
opment of the Object Modeling Technique notation.

Many individuals helped in the review of the manuscript, but in particular we wish to
thank David Hentchel, Mark Kornfein, and Marc Laymon for their thorough reviews and
perceptive comments.

Finally and most importantly we wish to thank our wives and families for their patience
and encouragement during the many long weekends and evenings that went into the writing
of this book.

Production Note

The manuscript of this book was prepared by the authors on SUN workstations using the
FrameMaker document preparation system. We drew the diagrams using the FrameMaker
system. We created most object diagrams using our OMTool editor and converted them to
FrameMaker format. We performed detailed page layout, made the index, and generated the
table of contents using the FrameMaker system. Proof copies of the complete document
were printed on Apple LaserWriter Plus printers. We generated PostScript page description
files from the final document, copied them onto a Unix tar tape, and sent the tape to the pub-
lisher for generation of the camera copy on a Linotronic 202 typesetter. The publisher pre-
pared and set the title and copyright pages.

Contents

PREFACE
Ackno
CHAPTER 1
1.1
1.2

wledgments, xii
INTRODUCTION
What [s Object-Oriented?, 1
What Is Object-Oriented Development?, 4

1.3 Object-Oriented Themes, 7

1.4
1.5

Evidence for Usefulness of Object-Oriented Development, 9
Organization of this Book, 10

Bibliographic Notes, 12

Refere

nces, 12

Exercises, 13

Part 1: Modeling Concepts

CHAPTER 2
2.1

MODELING AS A DESIGN TECHNIQUE
Modeling, 15

2.2 The Object Modeling Technique, 16

2.3

Exerci
CHAPTER 3

3.1

3.2

3.3

34

3.5

3.6

3.7

Chapter Summary, 19
ses, 19
OBJECT MODELING
Objects and Classes, 21
Links and Associations, 27
Advanced Link and Association Concepts, 31
Generalization and Inheritance, 38
Grouping Constructs, 43
A Sample Object Model, 43
Practical Tips, 46

15

21

3.8

CONTENTS

Chapter*Summary, 47

Bibliographic Notes, 48
References, 48
Exercises, 49

CHAPTER4 ADVANCED OBJECT MODELING 57
4.1 Aggregation, 57
4.2 Abstract Classes, 61
4.3 Generalization as Extension and Restriction, 63
4.4 Multiple Inheritance, 65
4.5 Metadata, 69
4.6 Candidate Keys, 71
4.7 Constraints, 73
4.8 Chapter Summary, 77

Bibliographic Notes, 79
References, 79
Exercises, 80

CHAPTER 5 DYNAMIC MODELING 84
5.1 Events and States, 84
5.2 Operations, 92
5.3 Nested State Diagrams, 94
5.4 Concurrency, 99
5.5 Advanced Dynamic Modeling Concepts, 101
5.6 A Sample Dynamic Model, 105
5.7 Relation of Object and Dynamic Models, 110
5.8 Practical Tips, 111
5.9 Chapter Summary, 112

Bibliographic Notes, 113
References, 115
Exercises, 115

CHAPTER6 FUNCTIONAL MODELING 123
6.1 Functional Models, 123
6.2 Data Flow Diagrams, 124
6.3 Specifying Operations, 130
6.4 Constraints, 132
6.5 A Sample Functional Model, 133
6.6 Relation of Functional to Object and Dynamic Models, 137
6.7 Chapter Summary, 139

Bibliographic Notes, 140
References, 140
Exercises, 141

CONTENTS

Part 2: Design Methodology
CHAPTER7 METHODOLOGY PREVIEW

7.1 OMT as a Software Engineering Methodology, 144

7.2 The OMT Methodology, 145
7.3 Impact of an Object-Oriented Approach, 146
7.4 Chapter Summary, 146
Exercises, 147
CHAPTER8 ANALYSIS
8.1 Overview of Analysis, 148
8.2 Problem Statement, 150
8.3 Automated Teller Machine Example, 151
8.4 Object Modeling, 152
8.5 Dynamic Modeling, 169
8.6 Functional Modeling, 179
8.7 Adding Operations, 183
8.8 Iterating the Analysis, 185
8.9 Chapter Summary, 187
Bibliographic Notes, 188
References, 188
Exercises, 189
CHAPTERS SYSTEM DESIGN
9.1 Overview of System Design, 198
9.2 Breaking a System into Subsystems, 199
9.3 Identifying Concurrency, 202

9.4 Allocating Subsystems to Processors and Tasks, 203

9.5 Management of Data Stores, 205
9.6 Handling Global Resources, 207

9.7 Choosing Software Control Implementation, 207

9.8 Handling Boundary Conditions, 210
9.9 Setting Trade-off Priorities, 210
9.10 Common Architectural Frameworks, 211
9.11 Architecture of the ATM System, 217
9.12 Chapter Summary, 218
Bibliographic Notes, 220
References, 220
Exercises, 221

CHAPTER 10 OBJECT DESIGN
10.1 Overview of Object Design, 227
10.2 Combining the Three Models, 229
10.3 Designing Algorithms, 230

vii

144

148

198

227

viii

104
10.5
10.6
10.7
10.8
10.9

Design Optimization, 235
Implementation of Control, 239
Adjustment of Inheritance, 242
Design of Associations, 245
Object Representation, 248
Physical Packaging, 249

10.10 Documenting Design Decisions, 251
10.11 Chapter Summary, 252
Bibliographic Notes, 254

References, 254

Exercises, 255

CHAPTER 11 METHODOLOGY SUMMARY

11.1
11.2
1.3
11.4

Analysis, 261

System Design, 262
Object Design, 263
Chapter Summary, 264

Exercises, 264
CHAPTER 12 COMPARISON OF METHODOLOGIES

12.1
12.2
12.3
12.4
12.5

Structured Analysis/Structured Design (SA/SD), 266
Jackson Structured Development (JSD), 268
Information Modeling Notations, 271
Object-Oriented Work, 273

Chapter Summary, 274

References, 275
Exercises, 275

Part 3: implementation
CHAPTER 13 FROM DESIGN TO IMPLEMENTATION

13.1
13.2
13.3
134

Implementation Using a Programming Language, 278
Implementation Using a Database System, 279
Implementation Outside a Computer, 280

Overview of Part 3, 280

CHAPTER 14 PROGRAMMING STYLE

14.1
14.2
14.3
14.4
14.5
14.6

Object-Oriented Style, 281
Reusability, 282

Extensibility, 285

Robustness, 286
Programming-in-the-Large, 288
Chapter Summary, 291

Bibliographic Notes, 291

CONTENTS

260

266

278

281

CONTENTS ix

References, 292
Exercises, 292
CHAPTER 15 OBJECT-ORIENTED LANGUAGES 286
15.1 Translating a Design into an Implementation, 296
15.2 Class Definitions, 297
15.3 Creating Objects, 301
15.4 Calling Operations, 305
15.5 Using Inheritance, 308
15.6 Implementing Associations, 312
15.7 Object-Oriented Language Features, 318
15.8 Survey of Object-Oriented Languages, 325
15.9 Chapter Summary, 330
Bibliographic Notes, 332
References, 333
Exercises, 334
CHAPTER 16 NON-OBJECT-ORIENTED LANGUAGES 340
16.1 Mapping Object-Oriented Concepts, 340
16.2 Translating Classes into Data Structures, 342
16.3 Passing Arguments to Methods, 344
16.4 Allocating Objects, 345 °
16.5 Implementing Inheritance, 347
16.6 Implementing Method Resolution, 351
16.7 Implementing Associations, 355
16.8 Dealing with Concurrency, 358
16.9 Encapsulation, 359
16.10 What You Lose, 361
16.11 Chapter Summary, 362
Bibliographic Notes, 363
References, 364
Exercises, 364
CHAPTER 17 RELATIONAL DATABASES 366
17.1 General DBMS Concepts, 366
17.2 Relational DBMS Concepts, 368
17.3 Relational Database Design, 373
17.4 Advanced Relational DBMS, 387
17.5 Chapter Summary, 388
Bibliographic Notes, 389
References, 390
Exercises, 390

Part 4: Applications

CHAPTER 18 OBJECT DIAGRAM COMPILER

18.1 Background, 398

18.2 Problem Statement, 399
18.3 Analysis, 401

18.4 System Design, 407
18.5 Object Design, 408
18.6 Implementation, 412
18.7 Lessons Learned, 412
18.8 Chapter Summary, 413
Bibliographic Notes, 413
References, 413

Exercises, 414

CHAPTER 19 COMPUTER ANIMATION

19.1 Background, 417

19.2 Problem Statement, 418
19.3 Analysis, 420

19.4 System Design, 424
19.5 Object Design, 426
19.6 Implementation, 428
19.7 Lessons Learned, 430
19.8 Chapter Summary, 431
Bibliographic Notes, 431
References, 432

Exercises, 432

CHAPTER 20 ELECTRICAL DISTRIBUTION DESIGN SYSTEM

20.1 Background, 433

20.2 Problem Statement, 435
20.3 Analysis, 436

20.4 System Design, 444
20.5 Object Design, 445
20.6 Implementation, 448
20.7 Lessons Learned, 448
20.8 Chapter Summary, 449
Bibliographic Notes, 449
References, 449

Exercises, 450

APPENDIXA OMT GRAPHICAL NOTATION

APPENDIXB GLOSSARY

ANSWERS TO SELECTED EXERCISES

INDEX

CONTENTS

397

416

433

453
454
465
491

1

Introduction

Object-oriented modeling and design is anew way of thinking about problems using models
organized around real-world concepts. The fundamental construct is the object, which com-
bines both data structure and behavior in a single entity. Object-oriented models are useful
for understanding problems, communicating with application experts, modeling enterprises,
preparing documentation, and designing programs and databases. This book presents an
object-oriented software development methodology, the Object Modeling Technique
(OMT), which extends from analysis through design to implementation. First an analysis
model is built to abstract essential aspects of the application domain without regard for even-
tual implementation. This model contains objects found in the application domain, including
a description of the properties of the objects and their behavior. Then design decisions are
made and details are added to the model to describe and optimize the implementation. The
application-domain objects form the framework of the design model, but they are imple-
mented in terms of computer-domain objects. Finally the design model is implemented in a
programming language, database, or hardware.

We describe a graphical notation for expressing object-oriented models. Application-
domain and computer-domain objects can be modeled, designed, and implemented using the
same object-oriented concepts and notation. The same seamless notation is used from anal-
ysis to design to implementation so that information added in one stage of development need
not be lost or translated for the next stage.

1.1 WHAT IS OBJECT-ORIENTED?

Superficially the term “object-oriented” means that we organize software as a collection of
discrete objects that incorporate both data structure and behavior. This is in contrast to con-
ventional programming in which data structure and behavior are only loosely connected.
There is some dispute about exactly what characteristics are required by an object-oriented

approach, but they generally include four aspects: identity, classification, polymorphism,
and inheritance.

2 Chapter 1 / INTRODUCTION
1.1.1 Characteristics of Objects

Identity means that data is quantized into discrete, distinguishable entities called objects. A
paragraph in a document, a window on my workstation, and the white queen in a chess game
are examples of objects. Figure 1.1 shows some additional objects. Objects can be concrete,
such as a file in a file system, or conceptual, such as a scheduling policy in a multiprocessing
operating system. Each object has its own inherent identity. In other words, two objects are
distinct even if all their attribute values (such as name and size) are identical.

variable name | address
aCredit 10000007
aDebit 13537163
anAccount 56826358
aSavingsAccount | 45205128

a symbol table abinary tree the gray television
Mike's bicycle Brian's bicycle a white rook

Figure 1.1 Objects

In the real world an object simply exists, but within a programming language each ob-
ject has a unique handle by which it can be uniquely referenced. The handle may be imple-
mented in various ways, such as an address, array index, or unique value of an attribute.
Object references are uniform and independent of the contents of the objects, permitting
mixed collections of objects to be created, such as a file system directory that contains both
files and subdirectories.

Classification means that objects with the same data structure (artributes) and behavior
(operations) are grouped into a class. Paragraph, Window, and ChessPiece are examples of
classes. A class is an abstraction that describes properties important to an application and
ignores the rest. Any choice of classes is arbitrary and depends on the application.

Each class describes a possibly infinite set of individual objects. Each object is said to
be an instance of its class. Each instance of the class has its own value for each attribute but
shares the attribute names and operations with other instances of the class. Figure 1.2 shows
two classes and some of their respective instance objects. An object contains an implicit ref-
erence to its own class; it “knows what kind of thing it is.”

Polymorphism means that the same operation may behave differently on different class-
es. The move operation, for example, may behave differently on the Window and ChessPiece
classes. An operation is an action or transformation that an object performs or is subject to.
Right-justify, display, and move are examples of operations. A specific implementation of an

1.1 WHAT IS OBJECT-ORIENTED? 3

icycle objects
Bicy { Bicycle class

Attributes

frame size
wheel size

ct gears
—%23—9 material
Operations
: shift

move
repair

Polygon objects Polygon class
Attributes

vertices
border color
abstract fill color
into —> Operations
draw
erase

move
Figure 1.2 Objects and classes

operation by a certain class is called a method. Because an object-oriented operator is poly-
morphic, it may have more than one method implementing it.

In the real world, an operation is simply an abstraction of analogous behavior across dif-
ferent kinds of objects. Each object “knows how” to perform its own operations. In an ob-
ject-oriented programming language, however, the language automatically selects the
correct method to implement an operation based on the name of the operation and the class
of the object being operated on. The user of an operation need not be aware of how many
methods exist to implement a given polymorphic operation. New classes can be added with-
out changing existing code, provided methods are provided for each applicable operation on
the new classes.

Inheritance is the sharing of attributes and operations among classes based on a hierar-
chical relationship. A class can be defined broadly and then refined into successively finer
subclasses. Each subclass incorporates, or inherits, all of the properties of its superclass and
adds its own unique properties. The properties of the superclass need not be repeated in each
subclass. For example, ScrollingWindow and FixedWindow are subclasses of Window. Both
subclasses inherit the properties of Window, such as a visible region on the screen. Scrolling-
Window adds a scroll bar and an offset. The ability to factor out common properties of sev-
eral classes into a common superclass and to inherit the properties from the superclass can

greatly reduce repetition within designs and programs and is one of the main advantages of
an object-oriented system.

