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Preface

This book aims at an accessible, concise, and intuitive exposition of two
related subjects that find broad practical application:

(a) Convex analysis, particularly as it relates to optimization.

(b) Duality theory for optimization and minimax problems, mainly within
a convexity framework.

The focus on optimization is to derive conditions for existence of primal
and dual optimal solutions for constrained problems such as

minimize f(z)
subject to z € X, gi(z) <0, j=1,...,r

Other types of optimization problems, such as those arising in Fenchel
duality, are also part of our scope. The focus on minimax is to derive
conditions guaranteeing the equality

inf sup ¢(z, z) = sup inf ¢(z, z),
reX zeZ z€ZzcX

and the attainment of the “inf’ and the “sup.”

The treatment of convexity theory is fairly detailed. It touches upon
nearly all major aspects of the subject, and it is sufficient for the devel-
opment of the core analytical issues of convex optimization. The mathe-
matical prerequisites are a first course in linear algebra and a first course
in real analysis. A summary of the relevant material is provided in an
appendix. Prior knowledge of linear and nonlinear optimization theory is
not assumed, although it will undoubtedly be helpful in providing context
and perspective. Other than this modest background, the development is
self-contained, with rigorous proofs provided throughout.

We have aimed at a unified development of the strongest possible
forms of duality with the most economic use of convexity theory. To this
end, our analysis often departs from the lines of Rockafellar’s classic 1970
book and other books that followed the Fenchel/Rockafellar formalism. For
example, we treat differently closed set intersection theory and preserva-
tion of closure under linear transformations (Sections 1.4.2 and 1.4.3); we

vii



viii Preface

develop subdifferential calculus by using constrained optimization duality
(Section 5.4.2); and we do not rely on concepts such as infimal convolu-
tion, image, polar sets and functions, bifunctions, and conjugate saddle
functions. Perhaps our greatest departure is in duality theory itself: sim-
ilar to Fenchel/Rockafellar, our development rests on Legendre/Fenchel
conjugacy ideas, but is far more geometrical and visually intuitive.

Our duality framework is based on two simple geometrical problems:
the min common point problem and the maz crossing point problem. The
salient feature of the min common/max crossing (MC/MC) framework is its
highly visual geometry, through which all the core issues of duality theory
become apparent and can be analyzed in a unified way. Qur approach is to
obtain a handful of broadly applicable theorems within the MC/MC frame-
work, and then specialize them to particular types of problems (constrained
optimization, Fenchel duality, minimax problems, etc). We address all du-
ality questions (existence of duality gap, existence of dual optimal solutions,
structure of the dual optimal solution set), and other issues (subdifferential
theory, theorems of the alternative, duality gap estimates) in this way.

Fundamentally, the MC/MC framework is closely connected to the
conjugacy framework, and owes its power and generality to this connec-
tion. However, the two frameworks offer complementary starting points
for analysis and provide alternative views of the geometric foundation
of duality: conjugacy emphasizes functional/algebraic descriptions, while
MC/MC emphasizes set/epigraph descriptions. The MC/MC framework is
simpler, and seems better suited for visualizing and investigating questions
of strong duality and existence of dual optimal solutions. The conjugacy
framework, with its emphasis on functional descriptions, is more suitable
when mathematical operations on convex functions are involved, and the
calculus of conjugate functions can be brought to bear for analysis or com-
putation.

The book evolved from the earlier book of the author [BNO03] on
the subject (coauthored with A. Nedié and A. Ozdaglar), but has different
character and objectives. The 2003 book was quite extensive, was struc-
tured (at least in part) as a research monograph, and aimed to bridge the
gap between convex and nonconvex optimization using concepts of non-
smooth analysis. By contrast, the present book is organized differently,
has the character of a textbook, and concentrates exclusively on convex
optimization. Despite the differences, the two books have similar style and
level of mathematical sophistication, and share some material.

The chapter-by-chapter description of the book follows:

Chapter 1: This chapter develops all of the convex analysis tools that
are needed for the development of duality theory in subsequent chapters.
It covers basic algebraic concepts such as convex hulls and hyperplanes,
and topological concepts such as relative interior, closure, preservation of
closedness under linear transformations, and hyperplane separation. In
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addition, it develops subjects of special interest in duality and optimization,
such as recession cones and conjugate functions.

Chapter 2: This chapter covers polyhedral convexity concepts: extreme
points, the Farkas and Minkowski-Weyl theorems, and some of their ap-
plications in linear programming. It is not needed for the developments of
subsequent chapters, and may be skipped at first reading.

Chapter 3: This chapter focuses on basic optimization concepts: types
of minima, existence of solutions, and a few topics of special interest for
duality theory, such as partial minimization and minimax theory.

Chapter 4: This chapter introduces the MC/MC duality framework. It
discusses its connection with conjugacy theory, and it charts its applica-
tions to constrained optimization and minimax problems. It then develops
broadly applicable theorems relating to strong duality and existence of dual
optimal solutions.

Chapter 5: This chapter specializes the duality theorems of Chapter 4 to
important contexts relating to linear programming, convex programming,
and minimax theory. It also uses these theorems as an aid for the devel-
opment of additional convex analysis tools, such as a powerful nonlinear
version of Farkas' Lemma, subdifferential theory, and theorems of the al-
ternative. A final section is devoted to nonconvex problems and estimates
of the duality gap, with special focus on separable problems.

In aiming for brevity, I have omitted a number of topics that an
instructor may wish for. One such omission is applications to specially
structured problems; the book by Boyd and Vanderbergue (BoV04], as well
as my book on parallel and distributed computation with John Tsitsiklis
[BeT89] cover this material extensively (both books are available on line).

Another important omission is computational methods. However, 1
have written a long supplementary sixth chapter (over 100 pages), which
covers the most popular convex optimization algorithms (and some new
ones), and can be downloaded from the book’s web page

http://www.athenasc.com/convexduality. html.

This chapter, together with a more comprehensive treatment of convex
analysis, optimization, duality, and algorithms will be part of a more ex-
tensive textbook that I am currently writing. Until that time, the chapter
will serve instructors who wish to cover convex optimization algorithms in
addition to duality (as I do in my M.LT. course). This is a “living” chapter
that will be periodically updated. Its current contents are as follows:

Chapter 6 on Algorithms: 6.1. Problem Structures and Computational
Approaches; 6.2. Algorithmic Descent; 6.3. Subgradient Methods; 6.4. Poly-
hedral Approximation Methods; 6.5. Proximal and Bundle Methods; 6.6.
Dual Proximal Point Algorithms; 6.7, Interior Point Methods; 6.8. Approx-
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imate Subgradient Methods; 6.9. Optimal Algorithms and Complexity.

While I did not provide exercises in the text, I have supplied a sub-
stantial number of exercises (with detailed solutions) at the book’s web
page. The reader/instructor may also use the end-of-chapter problems (a
total of 175) given in [BNOO3], which have similar style and notation to
the present book. Statements and detailed solutions of these problems can
be downloaded from the book’s web page and are also available on line at

http://www.athenasc.com/convexity.html.

The book may be used as a text for a theoretical convex optimization
course; [ have taught several variants of such a course at MIT and elsewhere
over the last ten years. It may also be used as a supplementary source for
nonlinear programming classes, and as a theoretical foundation for classes
focused on convex optimization models (rather than theory).

The book has been structured so that the reader/instructor can use
the material selectively. For example, the polyhedral convexity material
of Chapter 2 can be omitted in its entirety, as it is not used in Chapters
3-5. Similarly, the material on minimax theory (Sections 3.4, 4.2.5, and
5.5) may be omitted; and if this is done, Sections 3.3 and 5.3.4, which use
the tools of partial minimization, may be omitted. Also, Sections 5.4-5.7
are “terminal” and may each be omitted without effect on other sections.

A “minimal” self-contained selection, which I have used in my nonlin-
ear programming class at MIT (together with the supplementary web-based
Chapter 6 on algorithms), consists of the following:

Chapter 1, except for Sections 1.3.3 and 1.4.1.
Section 3.1.

Chapter 4, except for Section 4.2.5.

Chapter 5, except for Sections 5.2, 5.3.4, and 5.5-5.7.

This selection focuses on nonlinear convex optimization, and excludes all
the material relating to polyhedral convexity and minimax theory.

I would like to express my thanks to several colleagues for their con-
tributions to the book. My collaboration with Angelia Nedi¢ and Asuman
Ozdaglar on our 2003 book was important in laying the foundations of the
present book. Huizhen (Janey) Yu read carefully early drafts of portions
of the book, and offered several insightful suggestions. Paul Tseng con-
tributed substantially through our joint research on set intersection theory,
given in part in Section 1.4.2 (this research was motivated by earlier col-
laboration with Angelia Nedié). Feedback from students and colleagues,
including Dimitris Bisias, Vivek Borkar, John Tsitsiklis, Mengdi Wang,
and Yunjian Xu, is highly appreciated. Finally, I wish to thank the many
outstanding students in my classes, who have been a continuing source of
motivation and inspiration.
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1.1

2 Basic Concepts of Convex Analysis Chap. 1

Convex sets and functions are very useful in optimization models, and have
a rich structure that is convenient for analysis and algorithms. Much of this
structure can be traced to a few fundamental properties. For example, each
closed convex set can be described in terms of the hyperplanes that support
the set, each point on the boundary of a convex set can be approached
through the relative interior of the set, and each halfline belonging to a
closed convex set still belongs to the set when translated to start at any
point in the set.

Yet, despite their favorable structure, convex sets and their analysis
are not free of anomalies and exceptional behavior, which cause serious
difficulties in theory and applications. For example, contrary to affine
and compact sets, some basic operations such as linear transformation and
vector sum may not preserve the closedness of closed convex sets. This in
turn complicates the treatment of some fundamental optimization issues,
including the existence of optimal solutions and duality.

For this reason, it is important to be rigorous in the development of
convexity theory and its applications. Qur aim in this first chapter is to
establish the foundations for this development, with a special emphasis on
issues that are relevant to optimization.

CONVEX SETS AND FUNCTIONS

We introduce in this chapter some of the basic notions relating to convex
sets and functions. This material permeates all subsequent developments
in this book. Appendix A provides the definitions, notational conventions,
and results from linear algebra and real analysis that we will need. We first
define convex sets (cf. Fig. 1.1.1).

Definition 1.1.1: A subset C of ®7 is called convez if

ar+ (1 —a)y € C, Vz,yeC, Vael0l]

Note that the empty set is by convention considered to be convex.
Generally, when referring to a convex set, it will usually be apparent from
the context whether this set can be empty, but we will often be specific
in order to minimize ambiguities. The following proposition gives some
operations that preserve convexity.

Proposition 1.1.1:

(a) The intersection N;e;C; of any collection {C; | i € I'} of convex
sets is convex.
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oz+(1-a)y, 0<a<l1

Figure 1.1.1. Illustration of the definition of a convex set. For convexity, linear
interpolation between any two points of the set must yield points that lie within
the set. Thus the sets on the left are convex, but the sets on the right are not.

(b) The vector sum C + C3 of two convex sets C; and C? is convex.

(c) The set AC is convex for any convex set C and scalar A. Fur-
thermore, if C is a convex set and A1, A2 are positive scalars,

(A1 + A2)C = AiC + AC.

(d) The closure and the interior of a convex set are convex.

(e) The image and the inverse image of a convex set under an affine
function are convex.

Proof: The proof is straightforward using the definition of convexity. To
prove part (a), we take two points z and y from N;erCi, and we use the
convexity of C; to argue that the line segment connecting z and y belongs
to all the sets C;, and hence, to their intersection.

Similarly, to prove part (b), we take two points of C; + Ca, which we
represent as z1 + z2 and y1 + y2, with z1,y1 € C) and z3,y2 € Cs2. For any
a € [0,1], we have

a(z1 +22) + (1 — a)(y1 + y2) = (az1 + (1 — a)y1) + (o2 + (1 — a)ye2).

By convexity of Cy and C, the vectors in the two parentheses of the right-
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hand side above belong to C; and Ca, respectively, so that their sum belongs
to Ci + Ca. Hence C1 + C is convex. The proof of part (c) is left as an
exercise for the reader. The proof of part (e) is similar to the proof of part

(b).

To prove part (d), let C be a convex set. Choose two points z and y
from the closure of C, and sequences {zx} C C and {yx} C C, such that
z; — = and y — y. For any a € [0, 1], the sequence {azi + (1 — o)k },
which belongs to C by the convexity of C, converges to az+(1—a)y. Hence
oz + (1 — o)y belongs to the closure of C, showing that the closure of C is
convex. Similarly, we choose two points z and % from the interior of C, and
we consider open balls that are centered at x and y, and have sufficiently
small radius r so that they are contained in C. For any a € [0, 1], consider
the open ball of radius r that is centered at az + (1 — a)y. Any point in
this ball, say az + (1 — a)y + 2, where ||z]| < 7, belongs to C, because it
can be expressed as the convex combination a(z + z) + (1 — a)(y + z) of
the vectors £ + z and y + z, which belong to C. Hence the interior of C
contains ar + (1 — a)y and is therefore convex. Q.E.D.

Special Convex Sets

We will often consider some special sets, which we now introduce. A hy-
perplane is a set specified by a single linear equation, i.e., a set of the form
{z | @’z = b}, where a is a nonzero vector and b is a scalar. A halfs-
pace is a set specified by a single linear inequality, i.e., a set of the form
{z | o’z < b}, where a is a nonzero vector and b is a scalar. It is clearly
closed and convex. A set is said to be polyhedral if it is nonempty and it is
the intersection of a finite number of halfspaces, i.e., if it has the form

{zlajz<b;,5=1,...,r},

where a1, ...,ar and by,..., b, are some vectors in " and scalars, respec-
tively. A polyhedral set is convex and closed, being the intersection of
halfspaces [cf. Prop. 1.1.1(a)].

A set C is said to be a coneif for allz € C and A > 0, we have Az € C.
A cone need not be convex and need not contain the origin, although the
origin always lies in the closure of a norempty cone (see Fig. 1.1.2). A
polyhedral cone is a set of the form

Cz{xla}mso,jzl,...,r},

where ay, ..., a, are some vectors in ®". A subspace is a special case of a
polyhedral cone, which is in turn a special case of a polyhedral set.



