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Foreword

The best-known distributive lattice with a unary operation is of course a
Boolean algebra, the unary operation being complementation. Since this
notion is very strong, several weaker forms of it have been considered and
have given rise to many different algebras. Notable amongst these is the
concept of an Ockham algebra which may be described simply as an algebra
£ = (L;\,V, £,0,1) of type (2,2,1,0,0) in which (L; A, V,0,1) is a bounded
distributive lattice and f : L — L is a dual endomorphism. The main feature
of this generalisation is the retention of the de Morgan laws.

The notion of an Ockham algebra came to prominence in the late 1970s.
Since then there have been many papers published concerning this variety
of algebras, involving both lattice-theoretic techniques and Priestley duality.
The earliest investigations gave rise to the book Ockham Algebras by Blyth
and Varlet (Oxford University Press, 1994). Following the appearance of
this, several new subvarieties of Ockham algebras have been introduced and
their properties investigated.

In the present volume, which researchers in the field will welcome as a
supplement to the above, Professor Fang has collated many of these interest-
ing new results. In particular, there is emphasis on situations in which the
distributive lattice L is endowed with variolis properties that are related to
pseudocomplementation, the resulting algebras being of type (2,2,1,1,0,0).
Included are detailed descriptions of the lattices of subvarieties, lattices of
congruences, and subdirectly irreducible algebras that arise.

T. S. Blyth
St. Andrews
Scotland



Preface

With the development of information science and theoretical computer sci-
ence, lattice-ordered algebraic structure theory has played a more and more
important role in theoretical and applied science. Not only is it an important
branch of modern mathematics, but it also has broad and important appli-
cations in algebra, topology, fuzzy mathematics and other applied sciences
such as coding theory, computer programs, multi-valued logic and science of
information systems, etc. The research in distributive lattices with unary
operations has made great progress in the past three decades, since Joel
Berman first introduced the distributive lattices with an additional unary
operation in 1978, which were named Ockham algebras by Goldberg a year
later. This is due to those researchers who are working on this subject, such as
Adams, Beazer, Berman, Blyth, Davey, Goldberg, Priestley, Sankappanavar
and Varlet.

The class of distributive lattices with unary operations is a very rich one
that contains many important subclasses of the algebras such as Ockham al-
gebras, pseudo-complemented algebras (or called p-algebras), Stone algebras,
Boolean algebras, de Morgan algebras and Kleene algebras. In the book Ock-
ham Algebra (Oxford University Press, 1994), Blyth and Varlet have further
explored Ockham algebras and the related concepts of distributive lattices
with unary operations. The author’s purpose in writing this text is to provide
additional insights and further research results on this theory. In particular,
the text includes those algebras such that Ockham algebras, pseudocomple-
mented Ockham algebras, demi-pseudocomplemented Ockham algebras, the
theory of Priestley topological duality and related topics. I hope that readers
through this book will learn about research development on the subject of
distributive lattices with unary operations since the mid-nineties of the last
century.

This book is written for senior-level university students, postgraduates
and researchers who are interested in lattice-ordered algebraic structures,
lattices and universal algebras, fuzzy mathematics and related fields. It is, to
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a large extent, based on my research results co-achieved with Professors T.
S. Blyth, H. J. Silva and J. C. Varlet. In Chapter 5, some results on pseudo-
complemented algebras are derived from the work of George Gritzer and
his collaborators; and some others on demi-pseudocomplemented algebras
are done from the work of H. P. Sankappanavar. I have tried to make the
contents as comprehensive as possible, so that the readers may not have to
use other references as aids to understand the book fully. Of course, it will
be of great help in grasping the contents of this book if the readers have
learnt the basic concepts of lattice theory and universal algebra. In order to
attain a more complete understanding of the theory of distributive lattices
with unary operations, it would be very helpful if the readers read this text
as a companion to the book Ockham Algebras.

I gratefully acknowledge Guangdong Polytechnic Normal University for
its financial support for the publication of this book. I do appreciate Profes-
sor T. S. Blyth very much that he has read the manuscript of this book and
kindly written a foreword for it. Furthermore, I am deeply indebted to Pro-
fessor Huang Yisheng for his very valuable help with the LaTeX. My special
thanks also go to Dr. Sun Zhongju, Mr. Wang Leibo, Miss Shen Xiamei and
Miss Yang Ting for their proof-reading. In particular, I would like to thank
my beloved family. It is hard to imagine that I could engage in teaching and
researching in this country with a peaceful mind and would have been able
to complete this book without the strong support, trust and love of my family.

Fang Jie
Guangzhou, China
October, 2010
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Chapter 1

Universal Algebra and Lattice-ordered
Algebras

1.1 Universal algebra

The fundamental concept of universal algebra is the notion of operation. If
k is a non-negative integer, then a k-ary operation on a set A is a mapping
f: A* — A. Specifically, when k& = 0, 1,2, we shall say that f is a nullary
operation, a unary operation, and a binary operation respectively.

Definition An algebra A of type (ki,...,kq) is a pair (A; F) where A is
a non-empty set and F is an a-tuple (fi1,..., fa), such that, for each ¢ with
1<i<a, f;is a k;-ary operation on A.

If, in particular, A is of type (2,2), the two binary operations being meet
and join and satisfying the following identities:

(L) ANz =2z, xVz =z (iddempotent);

(Ly) xAy=yAz, xVy=yVz (commutativity);

(Ls) 2 AN(yANz)=(xAy)Az, zV(yVz)=(zxVy)Vz (associativity);

(Ly) A (zVy) ==z, zV(zAy)=z (absorption),
then such an algebra A is called lattice. Equivalently, a lattice is an ordered
set L in which any pair of elements x and y in L have the greatest lower bound
which is denoted by z A y; and the least upper bound which is denoted by
zVy. .

If a lattice L has the smallest element 0 and the greatest element 1, the
L is said to be a bounded lattice, and it can be regarded as an algebra of type
(2,2,0,0). A lattice L is called to be distributive if it satisfies the following
distributive law:

(Ls) z A (yVz2)=(xAy)V(xzAZz); equivalently,

(Lg) xV(yANz)=(zVy A(zVz).

An ordered set (E; <) can also be regarded as an algebra with a binary
operation (order) < on F satisfying the following properties:
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(E1) (Vx € E) z < z (reflexive);
(E9) (Vz,y € E) if x < y and y < z then z = y (anti-symmetric);
(Es) (Vz,y,z € E) if < y and y < z then z < z (transitive).

If now (A; F) is an algebra of type (ki,...,kq) with F' = {f1,..., fa}
where each f; is a k;-ary operation on A, and B is a non-empty subset
of A, then (B;F) is called a subalgebra of (A; F) if B is closed under the
formation of each k;-ary operation f; with 1 < ¢ < «, and z4,...,7, € B,
filz1,...,zx,) € B. If B; with ¢ € I is a family of subalgebras of A, then
clearly, the intersection [ B; is a subalgebra of A, and A is a subalgebra of
itself. Given a non—empzteyl subset S of A the intersection of all subalgebras
of A which contains S is called the subalgebra generated by S that we shall
denote by [S]. It is obvious that [S] is the smallest subalgebra of A that
contains S. We say that A is finitely generated algebra if there exists some
non-empty set S such that A = [S].

A class C of algebras is said to be locally finite if every finitely generated
member of C is finite. It is well known that the class Dy ; of bounded
distributive lattices is locally finite.

An algebra (A; F') where F = {f1,..., fm} is said to be of finite range if
for any x € A and f,,,..., fm, € F there exist positive integers p,q with
p # q such that

(frm ---fmk)p+q($) = (fm oo fmg ) ().

Theorem 1.1 Let C be a class of bounded distributive lattices on which
are defined finitely many unary operations. If every member (A; F) where
F={fi,...,fm} of C is of finite range, then C is locally finite.

Proof Suppose that 4 = (A4; F) € C is generated by {z1,...,zx}. Here
we consider the case where F' = {fi, fo}, and for the general case, it can
be obtained by induction. Then there exist natural numbers m; ;,n; ; with
mi; # ngj such that f97™9 (g,) = f19 (z;) fori =1,2,...,kand j = 1,2.
Observe first that fJP"Lq(x) = fi(x) implies f;pﬂ(x) = fi(z) for all r € N.
Now let m = lem{m;; | 4 = 1,2,...,k;j = 1,2} and n = lem{n,; | ¢ =
L,2,...,k;j = 1,2}, thenm = m; ;r; j and n = n; js, j,and fori = 1,2,..., k
j = 172’

?

f]m+"(£z) _ f;ni,jri,j+"i,j+(8i,j-1)"1‘,1 (z:)
_ f;’bz‘,j+(5i,j—1)nz‘,j (xz)

= fiw) = ).
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Now, since A is of finite range by hypothesis, we have in a similar argument
that there exist natural numbers p, g with p # ¢ such that

(fif2)PT9(z;) = (frf2)%(z:) and (fof1)PF 9 (zs) = (fof1) (@) (1 =1,2,... k).
Then can see that the set
{97952 ... 97" (z:) | 1 < i < kigy € {fr, fo}ima,-..,ns €N}

is finite that Dg; generates .A. The result now follows from the fact that
Dy ; is locally finite. O

Definition A congruence relation on an algebra A of type (ki,...,kq) is
an equivalent relation 8 on A that satisfies the substitution property: for each
k;-ary operation f; on A with 1 <17 < ¢,

(aj,bj) €é (_] =1,... ,k)l) = (fi(al,... ,aki),fi(bl,... ,bki)) €40. (11)

Particularly, in a lattice L, an equivalent relation # is a congruence if
(a,b) € 6 and (¢,d) € 6 imply (aAc,bAd) € § and (aVe,bVd) € 8; and this,
by the commutativity of lattice operations A and V, can be simplified to the
following equivalent statement:

(a,b) €0 = (Vce L) (ahc,bAc)€f and (aVe bVe) €l (1.2)
The congruences on an algebra A are ordered as equivalence relations
<0 < (z,y) €0 implies (z,y) €.
If 8; and 6 are congruences on A, then by the relations defined as following:
(z,y) €1 NOy <> (z,y) € 6; and (z,y) € 2,

(3 ap=z,a1,...,anp =y € A)

(z,y) €1 Vb {(ai,ai_,,l) € 0, or (a;,ai+1) € Os.

We can see that 6; Afs is a congruence on A that is the biggest such that it is
contained in #; and 6; and 61 V 85 is a congruence on A that is the smallest
such that it contains #; and #>. Thus, the ordered set of all congruences on
A is a lattice with the smallest element w = {(a,a) | a € A} and the biggest
element : = A x A. This lattice is called the congruence lattice of A, denoted
by Con A. More general, if {6; | i € I} C ConA (I # @& (empty set)) we
define

(z,y) € NO; <= (Viel) (z,y) €0;
el



4 Chapter 1 Universal Algebra and Lattice-ordered Algebras

(z,y) € V b =

{(3 ag,a1,.--,an € A and 0;,...,0; )
iel

such that (aj,a;41) € 0i,,,
where j = 0,1,...,n — 1; ag = = and a, = y. Then N 6; and \ 6; can
i€l i€l

be proved to satisfy the substitution property (1.1), and consequently, these
are congruences on A. In particular, for a,b € A, 6(a,b) = A{p € Con 4 |
(a,b) € ¢} is a congruence on A that we shall call the principal congruence
generated by {a,b}.

If a,b are in a lattice I with a < b, then we shall denote by fa;(a, b) the
principal lattice congruence generated by a,b. We recall that, in a distributive
lattice,

(z,9) € Olat(a,b) <= zAa=yAa and TVb=yVb,

and that the intersection of two principal lattice congruences is again a prin-
cipal lattice congruence. In fact, if a < b and ¢ < d, then

Brat(a, b) A Brat(c,d) = Oat((a V) AbA DA ).

If A and B are algebras of the same type (ki,...,kq), then a mapping
¢ : A — B is a morphism if, for each k;-ary operation f; on A with 1 <4 < «,

fi(‘p(al)a s a(p(aki)) = Qp(fi(a'lv e 70’/6«;))7 (13)

whenever (a3, ...,a,) € Ak If, in addition, the mapping ¢ is surjective,
then ¢ is called an epimorphism with B an epimorphic image of A; if ¢ is
injective then it is said to be a monomorphism; and if ¢ is bijective (both
of surjective and injective) it is an isomorphism. A morphism ¢ : A — A is
said to be an endomorphism on A; and an isomorphism ¢ : A — A is said to
be an automorphism on A.

In particular, if A and B are ordered sets then a mapping ¢ : A — B is
said to be isotone if it is such that

(Vz,y € A) z <y = p(z) < p(y)
and antitone if it is such that
(Vr,y € A) z <y = o(z) = p(y).

If L and M are lattices, then a mapping ¢ : L — M is said to be morphism
if it is such that

(Vz,y € M) p(z Ay) = @(x) Aw(y) and (z Vy) = ¢(z) V @(y)
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and dual morphism if it is such that

(Vz,y € M) p(z Ny) = (z) V ¢ly) and p(z Vy) = ¢(z) A ¢(y)-
A bijection morphism is an isomorphism, and dually, dual isomorphism
is a bijection dual morphism.
Theorem 1.2 Let A and B be algebras with the same type, and let ¢ :
A — B be a morphism. Then the following statements hold:
(1) If X is a subalgebra of A, then ¢(X) is a subalgebra of B;
(2) If Y is a subalgebra of B, then o~ (Y) = {zx € A| p(z) € Y} is a
subalgebra of A.
Proof (1) Given a k;-ary operation f; on A and y1,...,yk, € ©(X), choose
z1,..., g, € X such that p(z;) =y; (j =1,2,...,k;). Since X is a subal-
gebra of A, then fi(z1,...,2x,) € X and so
filyrs - yuw,) = file(r), ..o o(zn,)) = o(fi(z1, .., 2k,)) € 0(X).
It follows that ¢(X) is a subalgebra.
(2) For a k;-ary operation f; and z1,...,zx, € ¢ 1(Y), by the definition
of ¢!, each y; = p(x;) € Y. Since Y is a subalgebra of B, we have
(P(fi(xl’ s 7mki)) = fi(w(xl)’ ceey Qa(mkl)) = fi(ylv s 7yki) € Y7
and so fi(z1,...,2k,) € @ H(Y). Consequently, ¢ }(Y) is a subalgebra
of A. O

The following fundamental result is very useful.

Theorem 1.3 Let ¢ be a morphism of an algebra A into an algebra B, and
define a relation 8 on A by
(z,y) €0 = () = ¢(y). (1.4)
Then 0 is a congruence on A.
Proof Since equality is reflexive, symmetric and transitive, so 8 is an
equivalence relation. If f; is a k;-ary operation and (zj,y;) € 6 (j = 1,
2,...,k;), then p(x;) = ¢(y;), and so
@(.fi(mh .- axkz)) = fl(“p(xl)’ .. 7<p(xk:1))
= file(y1), -+, o(Yr,))
= o(filyrs - Uk))-

liFs

It follows that fi(z1,...,z,) = fi(y1,...,yk,;) and consequently, 6 is a con-
gruence. U
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The congruence defined by a morphism as in (1.4) is called the kernel of
the morphism ¢, denoted by Ker .
Let now 6 be a congruence on an algebra (A; F'), where F' is an a-tuple

(fi,---, fa), and let
A/0 = {[a)f | a € A},

where [a]f is the equivalence class of § on A (i.e. b€ [a]d <= (a,b) € 0).
For each k;-ary operation f; € F' we define a k;-ary operation f; on A/0 by

Fi([210, -, [2x,)0) = [fil=1, - h,)16. (1.5)

Then (A/6;F) is an algebra of type (ki,...,ks), where F' = {f, | f; € F}.
This algebra is called the quotient algebra of A. Consider now a mapping
b:A— A/0 by 4(z) = [#]6. By (1.5) it is clear that the } is an epimorphism
from (4; F') to (A/8; F). This epimorphism 1 is called the natural morphism
from an algebra to its quotient algebra. Conversely, the epimorphic images of
any algebra A are those the algebras A/0 defined by the congruence relations
6 on A. In fact, if ¢y : A — B is an epimorphism, we let § = Ker ). Then, by
Theorem 1.3, # = Ker 1 is a congruence on A. Define a mapping ¢ : A/ — B
by ¢([a]f) = (a), then p o =1, and since ¥ and |} are epimorphisms, it is
clear that ¢ is bijective. By observing that, for each k;-ary operation f; on
A/, _
@(fz([al]ga cee [akl]e)) = @([fi(ala cee ’akz)]e)

= w(fi(ala co ’aki))

= fi(w(a‘l)’ v aw(a’ki))

= fi(¢([a1]0), ..., ¢(lak,]0)),
we see that ¢ satisfies (1.3) and therefore ¢ is an isomorphism.

Let (A;; F) (i € I) be a family of algebras with the same type (kq,. .., k),
then it can be formed as a direct (cartesian) product ( ‘XI Ai F): p(i) € A,
1€

for any p € .XI A;; and each f; € F is given as follows:
1€

(¥p1, - spe € X A filprs - pe) @) = fiPr(0), - pre(3)-

Consider now the j-th projection e; : .XI A; — Aj given by e;(p) = p(j) for
1S
pe .>€<I A;. Then each e; is an epimorphism that can induce a congruence Y;
K2

given by the following description:

(Vp,q € iZSIAz-) (p,q) € ¥ <= p(j) = q(4); (1.6)
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and for each j €1, (é} A;) /v; is isomorphic to A;.
13
The following result is due to G. Birkhoff.

Theorem 1.4 29 Let A and A; (i € I) be algebras with the same type
(k1,..., ko), and let @; be a morphism of A to A; for each i € I. If define a
mapping h : A — X A; by

(Va € A)(Vi € I) h(a)(i) = pi(a).
Then h is a morphism of A to '>€<I A; and e;oh = ; foralli e I. O

By Theorem 1.2, h(A) in the above Theorem 1.4 is a subalgebra of ‘>e<I A;.
3
If now A is a subalgebra of the direct product ‘>e<I A; of a family of algebras
1

A; (i € I), we say that A is a subdirect product of algebras A; (i € I)
whenever e;(A) = A, for all ¢ € I. This is equivalent to the following property:

for any a; € A, there exists p € A such that p(i) = a;.

Let now A be an algebra and B subalgebra of A. If a is a congruence
on A, then the equivalence relation [, the restriction o to B (this being
denoted by a|p = ) is a congruence on B. Let 1; be denoted as in (1.5),
and 6; = 1;|4. Then the following results are also due to G. Birkhoft.

Theorem 1.5 If A is o subdirect product of a family of algebras A; (iel)
with the same type, then the following statements hold:

(1) A/6; ~ A; (isomorphic);
2) Nbi=w. O

el
Theorem 1.6 2% Let A be an algebra, and let {6; | i € I} be a family of
congruences on A such that N\ 0; = w. Then A is isomorphic to a subdirect

icl
product of the algebras A/0; (i € I). g

An important notion in universal algebras is so called subdirectly irre-

ducible. We say that an algebra A is subdirectly irreducible if A 6, =w (8; €
el

Con A) implies that there exists at least one #; € Con A suclel that ; = w.

This condition is equivalent to that A has a smallest non-trivial congruence;

i.e. a congruence o« such that § > « for all § € Con A with 8 # w. Such

a congruence ¢ is called the monolith of Con A, and dually, the comonolith

B € ConAif 326 forall § € Con A with § # .. A particular important case
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of a subdirectly irreducible algebra is a simple algebra, namely one for which
the congruence lattice is the two-element chain w <.

A class of algebras is equational (or call variety) if it is closed under
the formation of subalgebras, epimorphic images, and direct products. As
illustrated in the following result, which is a classic theorem of Birkhoff, sub-
directly irreducible algebras play a very important role in study of equational
algebras.

Theorem 1.7 2% Every algebra in a variety of algebras is isomorphic to a
direct product of subdirectly irreducible algebras. O

A subclass of a variety V which is also a variety is called a subvariety
of V. The subvarieties of V form a lattice which we denote by A(V), in
which the meet A A B of two subvarieties A and B is their intersection,
and the join AV B is the smallest subvariety of V' that contains AU B. A
classic theorem of B. Jénsson!®! states that if V is a variety every algebra
of which has a distributive congruence lattice then A(V) is distributive. A
fundamental theorem for a congruence-distributive variety was established
by B. A. Davey!®®] that is stated as follows.

Theorem 1.8 551 Let K = V(S) be a congruence-distributive variety gen-
erated by a finite set S of finite algebras, and order the set Si(K) of subdirectly
irreducible algebras in K by

A< B <= A is a homomorphic image of a subalgebra of B.

Then A(K) is a finite distributive lattice and is isomorphic to O(Si(K)),
the set of down-sets of Si(K). Moreover, A is a join-irreducible element of
A(K) if and only if A =V (A) for some A € Si(K). a

A class K of algebras is said to enjoy the (principal) congruence extension
property if, for all A,B € K with A a subalgebra of B, every (principal)
congruence 6 on A is the restriction |4 of some congruence ¢ on B. We say
that B is a strong extension of A if every congruence on A has at most one
extension to B, in which case A is said to be a strongly large subalgebra of B.

As shown by A. Day, in an equational class of algebras K, it enjoys
congruence extension property if and only if it enjoys principal congruence
extension property which is equivalent to the following condition.

for all subalgebras A of B and all a,b € A, 04(a,b) =0p(a,b)|a.

The following result shall prove to be useful.



