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PREFACE

A book on any mathematical subject above textbook level is not of much
value unless it contains new ideas and new perspectives. Also, the author may
be encouraged to include new results, provided that they help the reader gain
new insights and are presented along with known old results in a clear exposition.

It is with this philosophy that I write this volume. The two subjects, Dirichlet
series and modular forms, are traditional, but I treat them in both orthodox and
unorthodox ways. However, I try to make the book accessible to those who are
not familiar with such topics, by including plenty of expository material. More
specific descriptions of the contents will be given in the Introduction.

To some extent, this book has a supplementary nature to my previous book
Introduction to the Arithmetic Theory of Automorphic Functions, published by
Princeton University Press in 1971, though I do not write the present book with
that intent. While the 1971 book grew out of my lectures in various places, the
essential points of this new book have never been presented publicly or privately.
I hope that it will draw an audience as large as that of the previous book.

Princeton
March 2007 Goro Shimura
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INTRODUCTION

There are two types of Dirichlet series that we discuss in this book:

(1) T = Y. aTin| T,
0#nca+NZ

(2) L'(s;a,b)= Y &7lgl>.
O#é€a+b

Here s is a complex variable as usual, r is 0 or 1 for D} 5 and 0 < 7 € Z for
the latter series; a € Z and 0 < N € Z. To define the series of (2) we take an
imaginary quadratic field K embedded in C and take also an element a of K
and a Z-lattice b in K. One of our principal problems is to investigate the na-
ture of the values of these series at certain integer values of s. As a preliminary
step, we discuss their analytic continuation and functional equaltions. We ob-
tain Dirichlet L-functions and certain Hecke L-functions of K as suitable linear
combinations of these series, and so the values of such L-functions are included
in our objects of study. As will be explained below, these series are directly and
indirectly related to elliptic modular forms, and the exposition of such functions
in that context forms a substantial portion of this volume. Thus, as we said in
the preface, the main objective of this book is to present some new ideas, new
results, and new perspectives, along with old ones in this area covering certain
aspects of the theory of modular forms and Dirichlet series.
To be more specific, let us first consider the Dirichlet L-function

L(s, x) = »_ x(n)n™*
n=1

with a primitive Dirichlet character x modulo a positive integer N. It is well
known that if k is a positive integer and x(—1) = (—1), then

_ N
3) %%L(k, 0 =~ > X(@)Be(a/N),

a=1
where By, is the Bernoulli polynomial of degree k and G(¥) is the Gauss sum of
Y. If k=1 in particular, the last sum for x such that x(—1) = —1 becomes
Zfl\;l ¥(a)a/N, which reminds us of another well known result about the second
factor of the class number of a cyclotomic field, which is written hg/hp. Here
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hx tesp. hp is the class number of K resp. F; K is an imaginary subfield of
Q(¢) with a primitive mth root of unity { for some positive integer m and
F is the maximal real subfield of K. There is a classical formula for hg/hr,
which is easy factors times a product [[, ¢ x >, X(a)a, where X is a certain set
of primitive Dirichlet characters x such that x(—1) = -1.

No alternative formulas have previously been presented except when K is an
imaginary quadratic field K = Q(v/—d). Given such a K, take a real character
x of conductor d that corresponds to K. Then it is well known that

(4) w;;/aL(l, X) =hg = T x2) Zx q=[(d—1)/2],

where wy is the number of roots of unity in K.
Now we will prove as one of the main results of this book that there are new
formulas for L(k, x). The most basic one is

(k= 1'G(0)

(5) WL(’C» X) = > x(a)E1k-1(2a/d),

2(2F — x(2)) &
where ¢ = [(d—1)/2] and E; x_1(¢) is the Euler polynomial of degree k —1. This
clearly includes (4) (without hg) as a special case, as E; o(t) = 1. This formula
is better than (3) at least from the computational viewpoint, as Ey x—1(t) is a
polynomial in t of degree k — 1, whereas Bi(t) is of degree k. We will present
many more new formulas for L(k, x) in Sections 4 and 6. As applications, we
will prove some new formulas for the quotient hx /hp.

To avoid excessive details, we state it in this introduction only when K = Q(¢)
with m =2" > 4:

—QVHH{ZX } dg=2"2-1, y=r—-1-2""2

s=3 x€Y,

Here Y, is the set of primitive Dirichlet characters x of conductor 2° such that
x(—1) = —1. Notice that we have ZZ‘;l x(a), which is of far “smaller size” than
the sum 3__x(a)a in the classical formula. A similar but somewhat different
formula can be obtained in the case m = £" with an odd prime £.

The latter part of the book concerns the critical values of the series of type
(2). In this case we evaluate it at k/2 with an integer k such that 2—r <k <7
and r — k € 2Z. Then we can show that:

(6) There is a constant v which depends only on K (that is, independent of
a, b, 7, and k) such that L™ (k/2; @, b) is n("*%)/2y" times an algebraic number.

This was proved in one of the author’s papers. Though we will give a proof
of this fact in this book, it is merely the starting point. Indeed one of our
main problems is to find a suitable y so that the algebraic number can be
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computed. Before going into this problem, we note that the constant ~ can
be given as @(7) with a modular form ¢ of weight 1 and r € K N H, where
H = {z € C|Im(z) > 0}.

If r = k # 2, the value L™{r/2; a, b) can be given as #"h(7) with a holo-
morphic modular form h of weight r. Thus our task is to find (h/@")(7).
This can be achieved as follows. We fix a congruence subgroup I” of SL(Z)
to which both ¢ and h belong, and assume that we can find two modular
forms f and g that generate the algebra of all modular forms of all nonneg-
ative weights with respect to I. Then h = P(f, g) with a polynomial P, and
(R/e™) (1) = P((f/e*)(1), (9/¢*)(7)), where k resp. ¢ is the weight of f resp.
g. However there are two essential questions:

(I) How can we find P?

(I) In the general case in which r # k or k£ =2, L"(k/2; a, b) can be given
as m("%)/2p(1) with some nonholomorphic modular form (which we call nearly
holomorphic) p of weight 7. Then, how can we handle (p/¢")(7)?

Problem (II) can be reduced to Problem (I) and Problem (II) for simpler
p. In the easiest case we can express p as a polynomial ELTZ/?)] E%h,, where
h, is a holomorphic modular form of weight r — 2a and E; is a well known

nonholomorphic Eisenstein series of weight 2:
oc

1 1
Ez(z)z-%—ﬂ+z< >
n=1 *0<d[n
Then the problem can be reduced to (E2/¢?)(7) and (hq/¢"~2%)(7). The latter
quantity is handled by P for h,. As for F>, we have to deal with it in a special
way. For a given 7 we will find a special holomorphic modular form ¢ of weight
2 such that (E2/q)(7) can be explicitly given.

In this way the value of nonholomorphic functions can be reduced to the case of
holomorphic modular forms, and to Problem (I). We also have to find (f/¢*)(7)
and (g/¢?)(7), which is nontrivial, but our idea is to reduce infinitely many values
to finitely many values. In general, there is no clear-cut answer to (I). However,
we can produce two types of recurrence formulas for Eisenstein series, which
seem to be new and by which the problem about h/y” of an arbitrary weight
r can be reduced to the case of smaller r. (See (10.8) and (10.15¢).) Without
stating it, we content ourselves by mentioning its application to L"(k/2; o, b).
Assuming that a € b, 0 < k<7, and 7 — k € 2Z, put n = (r — k)/2, and

£2(a, b) = (=1)*@mi)*F Ik +n)L"(k/2; a, b)
2(20)"Im(7)" (D5 Eg) (1) if k=2,
a {0 if k # 2,

d> e(nz).

where D7 is a differential operator of the type mentioned above. Then we have
a recurrence formula
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t n
L7 5(a, b) = 122(2)2 (7;) £ 3(a, b) - £777 5(a, b)
=0 3=0

for 0 <t € Z and 0 < n € Z. Thus the values of £}(c, b) for k > 4 can be
reduced inductively to those for 2 < k < 4. If a € b, there is another recurrence
formula which reduces £3, (a, b) for 2k > 8 to the cases with 2k = 4 and
2k = 6.

We can form a Hecke L-function L{s, \) = >, A(a)N(a)~°, with a Hecke
ideal character A of K such that

Mar)=a Tlo" if aeK* and a-—1E€rq,

where ¢ is an integral ideal of K. Since this is a finite linear combination of
series of type (2), statement (6) holds for L(k/2, A) in place of L"(k/2; «, b). In
Section 13, we will present many examples of numerical values of L(k/2, A).

When r = 1, the function L(s, X) is closely connected with an elliptic curve C
defined over an algebraic number field & with complex multiplication in K. In a
certain case, it is indeed the zeta function of C over h. We will study this aspect
in Section 14, and compare L(1/2, A) with a period of a holomorphic 1-form on
C, when C is a member of a one-parameter family {C,},cq of elliptic curves.

However, without going into details of this theory, let us end this introduction
by briefly mentioning some other noteworthy features of the book.

(A) A discussion of irregular cusps of a congruence subgroup of SLy(Z) in
§1.11 and Theorem 1.13.
(B) The functional equation of the Eisenstein series

€l (z, s; p, g) = Im(2)* Z (mz+n)*imz +n|™2
(m,n)
under s+ 1 -k —s (Theorem 9.7). Here (2,5) e HXxC,0< N<Z,0<k¢
Z, (p, q) € Z2, and (m, n) Tuns over Z? under the condition 0 # (m, n) = (p, q)
(mod NZ?).

(C) The explicit Fourier expansion of €Y (z, 1 — k; p, q) given in (9.14).

(D) In Section 15, we discuss isomorphism classes of abelian varieties, elliptic
curves in particular, with complex multiplication defined over a number field
with the same zeta function.

(E) In Section 16 we present a new class of holomorphic differential operators
{le}:o:z. The operator 2, sends an automorphic form of weight k to that of
weight kp + 2p, and every operator of the same nature can be reduced to this
class.



CHAPTER 1

PRELIMINARIES ON MODULAR
FORMS AND DIRICHLET SERIES

1. Basic symbols and the definition of modular forms

Though some basic facts on elliptic modular forms are reviewed in this section,
we do not need them in Sections 2 through 7. Therefore the reader may go
directly to Section 2 after reading §1.1, Lemmas 1.6 and 1.12, and return to this
section before going to Section 8.

1.1. The symbols Z, Q, R, and C will mean as usual the ring of integers,
the fields of rational numbers, real numbers, and complex numbers, respectively.
Also, we denote by Q the algebraic closure of Q in C. Given an associative ring
A with identity element, we denote by A* the group of all invertible elements
of A, and by M,{A) the ring of all n x n-matrices with entries in A, and put
GL,(R) = M,(A)*. The identity element of M,,(A) is denoted by 1,, or simply
by 1, and the transpose of a matrix X by *X.If A is commutative, we put

SLn(A) = {a € GLn(A) | det(e) =1}.
Given a (2 x 2)-matrix v with coefficients in any ring, we put v = [a'y b”}

Cy dy
whenever no confusion is expected. We now put

(1.1a) H={zeC|Im(z) >0},
(1.1b) G=GLy(Q), G'=5LyQ),
(l.lc) Ga = GLQ(R), G; = SLQ(R

),
(].ld) Ga+ = {Of S GLn(R) l det(a) > 0}, G+ =G ﬂGa+.
For v € Gay and z € H we define y(z) € H and j,(z) € C* by

(1.20) 1(2) = 72 = (anz + by)/(er7 + dy),

(1.2b) 3% 2) = Gy (2) = det(y)"2(cyz + dy).
These can be expressed by a single equality
13) dert) 2 | 5| = [ |t

We recall easy relations
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(1.4a) Jap(z) = JalB2)js(2),
(1.4b) Im(az) = |ja(2)|~?Im(2), d(az)/dz = ju(2)72.

In fact, we can define vz by (1.2a) even for v € GL3(C) and z € C U {oo}.
Then the last formula of (1.4b) is meaningful for a € GLy(C).

1.2. For a function f: H — C, k € Z, and o € Gay, we define flya: H —
C by

(1.5) (fllke)(z) = ja(2)~* f(a(2)) (z € H).
We have
(1.6a) flle(aB) = (Fllce)llxB,
(1.6b) Flle(ely) = sgn(e)*f if ceRX.
For a positive integer N we put
(1.7) F(N) = {7 € SLy(Z) |7 =1, (mod N) },
(1.7b) I'(N)y={~vy€ SLy(Z)| b, e NZ},
(1.7¢) Io(Ny={~y€ SLy(Z)| c, € NZ},
(1.7d) N(Ny={~vyeIo(N)|ay—1€NZ}.

Then I'(1) = SLo(Z), I'(N) C IN(N) C I'b(N), and I'(N) is a normal subgroup
of I'(1). We call a sugroup of I'(1) a congruence subgroup if it contains I'(N)
as a subgroup of finite index for some N.

1.3. Let us now recall the definition of a modular form. We refer the reader
to [S71] for the basic facts on this subsect. We first put, for ¢ € C,

(1.8) e(c) = exp(2mic).

Given a congruence subgroup I" and an integer k, we call a holomorphic function
f on H a (holomorphic) modular form of weight k£ with respect to I' if
the following two conditions are satisfied:

(1.92) flley = f for every vy € I
(1.9b) For every o € I'(1) one has (fllka)(2) = > negCan - €(nz/N,) with
Con €EC and 0 < N, € Z.

We denote by 4 (I") the set of all such f. The last condition implies in partic-
ular

o0
(1.10) f(z)= ch -e(nz/N)

n=0
with ¢, € C and 0 < N € Z. It is known that: (i) .#(I") is a complex vector
space of finite dimension; (ii) (") = {0} if k < 0; (iii) #o(I") = C. From
(1.6b) we see that .# (") = {0} if k is odd and —1 € I'. It is often convenient
to consider modular forms without referring to I', so we put
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(111) -/%k::Up-ﬂk(F)v

where I” runs over all congruence subgroups of I'(1). We call an element f of
A a cusp form if c,g of (1.9b) is O for every a € I'(1). We denote by %), the
subset of .#, consisting of all the cusp forms, and put #x(I") = N M ().
For example, we recall a classical fact that .#15(I'(1)) = CA with

(1.12) AR =a]J0-a*  a=el).
n=1
Moreover, for r € Z the function A™/?% can be defined by
(1.13) AT/(z) = e(rz/24) [[A —q®),
n=1

and A™/24(z) € #, if 0 <r € 2Z. These functions are nonzero everywhere on
H. Let us now put

(1.14) © Py={a€Gylca=0}
Cleatly P, = {& € G4 | a(00) = co}. We have
(1.15) G, = I(1)P,.

Indeed, if @ € G; and afoo) # oo, then we can put a(oc) = a/c with integers
a and c¢ that are relatively prime. We can find integers b and d such that

a

ad —bc=1.Put v = [C b] . Then v € I'(1) and v(o0) = afc = e(00), and

d
so v 'a € P;. This proves (1.15). Because of this equality, we can replace I'(1)
in condition (1.9b) by G4.

1.4. Given a subfield ¢ of C, we denote by .# (P, I') the set of all elements
[ of & (I") of the form (1.10) with ¢, € @ for all n. We then put #(®, I') =
S N M (P, I'). Furthermore, we put

M) =Ur #(®, ),  F(®)=Up L% I,

where I' runs over all congruence subgroups of I'(1).

We extend this to meromorphic functions as follows. For m € Z and & as
above, we denote by &, (P) the set of all quotients p/q such that p € .# ., (P)
and 0 # q € #(P) with any k € Z, > 0. We then put &, = & (C),

«Q{m([‘) = {fe‘dmlfnm'y:f for every 76['}7
Lo (D, [') = (@) N ().
We call the elements of &, (®) d-rational. The elements of o4 (I") are called
modular funetions with respect to I". The orbit space I'\(HUQU {oo}) has a

structure of a compact Riemann surface, which can be presented as an algebraic
curve defined over an algebraic number field. Thus 24 (&, I') can be identified
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with the field of all algebraic functions on that curve over @ for a suitable choice
of @. For these the reader is referred to [S71, §6.7].

Let Q. denote the maximal abelian extension of Q in C. Then the field
#o(Qab) is stable under the maps f — foa for all « € G4. To show this,
by (1.15) we can reduce the problem to the cases where o belongs to I'(1) or
P,. The case a € P, is obvious. If a € I'(1), the result can be derived from
the fact that @ ((I"(IV)) is generated by J(z) and “modified” N-division values
of the Weierstrass p-function as stated in [S71, Proposition 6.9]. In [S71] the
field @%(Quap) is denoted by §, and the stability of § under G is given in [S71,
Proposition 6.22]. Somewhat more strongly we have

Theorem 1.5. Let & be a subfield of C containing Qap. Then flma €
(D) for every f € (D) and every « € G. In particular, f|lmo € M m(P)
for every a € Gy if f € M (D),

Proor. The field &% is the composite of C and #4(Qab); also, (Qap)
and C are linearly disjoint over Qap; see [S71, Proposition 6.1, Theorem 6.6
(4), Proposition 6.27]. Therefore @%(®) is the composite of & and 24 (Qab),
and so it is stable under G, . Since G; = I'(1)P; and our theorem is clear
for a € Py, it is sufficient to prove the case « € I'(1). Given f € &, (P), we
put h = f/g with g = A™/12 From (1.13) we see that g € #,(Q), and so
h € (). Thus hoa € 24 (P) for every o € I'(1) for the reason explained
above. Since A|joa = A, we see that g||mc is ¢ times a twelfth root of unity,
and so it is contained in &, (®). This proves the first assertion of our theorem,
as fllma = (h o a)g|lma, from which the assertion for f € .#,(®) follows
immediately.

Lemma 1.6. For a function f on H given by f(z) = 3 o, ane(nz/N) with
an € C and 0 < N € Z, the following assertions hold. (In each statement, o is
o positive constant.)

() f(z +iy) — ao = O(e™?™/N) uniformly as y — oo.

(i) ap = O(n®) = fl(z +iy) = O(y~>"1) uniformly as y — 0.

(iii) 3207 plann™ <o = f(z +1y) = O(y~*) uniformly as y — 0.

(iv) flz+iy) = O(y~%) uniformly as y — 0 = a, = O(n%).

) F(z) = f(=%) if an € R for all n.

PRrROOF. Changing f for f(Nz), we may assume that N = 1. Assertion (i)
is clear, as f is a convergent power series in e°"**. We will prove (ii) in the
next section after (2.14). To prove (iil), let g = f — ao. Then > p_; |ax| <
Yohe1 Iak|(n/k)°‘ < n*Y 7, laklk™® < Bn® with some B > 0. Thus (1 —

—%y)_ lg(2)] <Zm- e~ My Zn 1 lan|e” 2y = Z;o 16_27'?1/ Z: 1 lax| <
BY >  n%e2™¥ = O(y~* ') asin (ii). Therefore we obtain (iii), as 1— e~ =

O(y) as y — 0. For f asin (iv) we have |a,e™2™¥| = |f0 flz+iy)e 2 dg| <
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Ay~ with some A > 0 for sufficiently small y. Taking y = 1/n, we obtain (iv).
The last assertion is an easy exercise.

Lemma 1.7. Given f € .#}, there exists a positive constant K such that
|f(z)] < K(1+y~%) on the whole H. If f € %, then we can take K so that
|f(2)| < Ky=*? on the whole H.

PROOF. Suppose f € #(I). Let T = {z € H|Im(z) > 1/2}. Since T
contains the well known fundamental domian for I"(1)\H, we have H = I'(1)T,
and so we can find a finite subset A of I'(1) such that H = [J, ., 'aT. Put
fo = fllrka. Given z € H, there exists @ € A such that z € yaZ with some
v€ . Put B=a"y"!. Then f = flraB = fullxB = js(2)7* fa(Bz). Now f,
is bounded on T, and hence there is a positive constant K such that | f,(w)] < K
for every w € T and every o € A. Thus |f(2)] < K|cgz +dg|™*, as Bz € T. If
cg # 0, then |f(2)] € Klegy|™® < Ky=F, as |eg| > 1;if ¢g = 0, then |f(2)| < K.
This proves the first assertion. Suppose that f is a cusp form. Put g(z) = y*|f[?
and observe that g is I™-invariant and goa = y*|f,|?, which is bounded on T, as
fo 18 a cusp form; see Lemma 1.6 (i). Thus we can find a positive constant M such
that |g(az)] < M for every a € Aand z€T. Given z € H, take y€ I, a € A,
and w € T so that z = yow. Then |y*f(2)?| = g(z) = g(yaw) = g(aw) < M.
This completes the proof.

Lemma 1.8. If f(z) = 3 oo ,ane(nz/N) € My, then a, = O(n*). If in

n=0

particular f is a cusp form, then a, = O(n*/?).
This follows from Lemma 1.6 (iv) combined with Lemma 1.7.

Theorem 1.9. (i) For every k € Z, > 0, we have M = #1(Q) ®q C.
(ii) Given f(z) = 3 o0 ane(nz/N) € My and a field-automorphism o of

C, define an infinite series f°(z) formally by f(z) =3 oo a%e(nz/N). Then

n=0 “*n

this defines a holomorphic function on H and f° € .

PROOF. Assertion (i) can easily be derived from the facts that the curve
C = I'(N)\(HUQU{oo}) has a Q-rational model and that for every Q-rational
divisor X on C the linear system £ (X) has a basis contained in &4 (Q, I'(N)).
These are explained in [S00, pp. 62-64] in a more general case; (i) is actually a
special case of [S00, Theorem 9.9]. Given f as in (ii), we can put, in view of
(i), f =2 ,ex cgg Wwith a finite subset X of .#4(Q) and ¢, € C. Then clearly
f? =3 ,ex cgg, which proves (ii).

We can also prove that .#;(Q) can be spanned by the elements whose Fourier
coefficients at oo are contained in Z; see [S75d, Theorem 1] and [S76a, pp. 682
683]. See also [S71, Theorem 3.32], though the result stated there concerns only
cusp forms. We will present explicit examples of generators of >_pv, -#x(Q) in
Section 10.
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1.10. In this and next subsections we recall some basic terms such as elliptic
points and cusps, and discuss how they are related to the dimension formula for
A 1.(I"). The full treatment of these topics can be found in the first two chapters
of [S71]. First of all, we call an element a of G! elliptic if a # £1 and « has
a fixed point on H. Such a fixed point is unique for a. Let I" be a congruence
subgroup of I'(1). An element «, # 1, of I' is elliptic if and only if @ is of
finite order. The order of an elliptic element of I" is 3, 4, or 6. By an elliptic
point of I we understand a point fixed by an elliptic element of I". The images
of an elliptic point of I under I are also elliptic points of I". We can then find a
finite complete set of representatives for the elliptic points of I' modulo 7. Given
an elliptic point w of I', we put

(1.16) Tu = {y € (1} |4(w) = w}.

Then T, /{£1} is of order 2 or 3. We call w an elliptic point of I" of order 2
or 3 accordingly.

Next, there is a notion of a cusp. Since we are considering a subgroup I' of
I'(1), the set of cusps of I' is merely QU {oo}. Put

(1.17) Plz{aEG’llcazﬂ}, I'p=TnP.

In view of (1.15) we have G! = I'(1)P;, and the map o — a(o0) gives a bijec-
tion of I'(1)/I"(1)p onto Q U {oo}. Thus I'\(Q U {oo}) can be identified with
I\I’(1)/I(1)p, which is clearly a finite set. For s € QU {oo} put

(1.18) Iy={aeTl|als)=s}

and let p be an element of I'(1) such that p(s) = co. Then we can find a positive
integer h such that
n € Z}.

(1.19) {ﬂ:l}pl"sp_1={:lzl}{ [(1) ’1’]
€ plyp~t. If —1 ¢ T, however, there are two

1 h] or by — [1 h
01 01
is a regular cusp or an irregular cusp of I" accordingly. This definition does
not depend on the choice of p. (We can define these with p € SLz(R). Since
our group I is contained in I'(1), we can restrict p to I'(1). Then h is always

a positive integer.)

1 A
If —1 € I', we have [0 1

1

possibilities; plsp~" is generated by [ . We say that s

1.11. We fix a congruence subgroup of I'(1) and let v, resp. v3 denote the
number of I'-inequivalent elliptic points of order 2 resp. 3. Further let m be the
number of orbits in I'\{Q U {o0}). Then the genus g of the compact Riemann
surface I'\(H U QU {co}) is determined by



