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And he brought him forth abroad, and said,
Look now toward heaven, and tell the stars, if
thou be able to number them: and he said unto
him, So shall thy seed be.

Genesis 15, verse 5
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Introduction

This book is written from the perspective of several passionately held beliefs
about mathematical education. The first is that mathematics is a good story.
Theorems are not discovered in isolation, but happen as part of a culture, and
they are generally motivated by paradigms. In this book we are going to show
how one result from antiquity can be used to illuminate the study of much
that forms the undergraduate curriculum in number theory at a typical U.K.
university. The result is the Fundamental Theorem of Arithmetic. Our hope
is that students will understand that number theory is not just a collection of
tricks and isolated results but has a coherence fueled directly by a connected
narrative that spans centuries.

The second belief is that mathematics students (and indeed professional
mathematicians) come to the subject with different preferences and evolving
strengths. Therefore, we have endeavored to present differing approaches to
number theory. One way to achieve this is the obvious one of selecting ma-
terial from both the algebraic and the analytic disciplines. Less obviously, in
the early part of the book particularly, we sometimes present several different
proofs of a single result. The aim is to try to capture the imagination of the
reader and help her or him to discover his or her own taste in mathematics.
The book is written under the assumption that students are being exposed
to the power of analysis in courses such as complex variables, as well as the
power of abstraction in courses such as algebra. Thus we use notions from
finite group theory at several points to give alternative proofs. Often the re-
sulting approaches simplify and promote generalization, as well as providing
elegance. We also use this approach because we want to try to explain how
different approaches to elementary results are worked out later in different
approaches to the subject in general. Thus Euler’s proof of the Fundamental
Theorem of Arithmetic could be taken to prefigure the development of analytic
number theory with its ingenious use of the Euler product Formula. When we
move further into the analytic aspects of arithmetic, Euler’s relatively simple
observation may seem like a rather flimsy pretext. However, the view that
many nineteenth-century mathematicians took of functions (complex func-
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tions particularly) was profoundly influenced by the Fundamental Theorem
of Arithmetic. In their view, many functions are factorizable objects, and we
will try to illustrate this in describing some of the great achievements of that
century.

Having spoken of different approaches, it will surprise few readers that
number theory has many streams. A major surprise is the fact that some
of these meet again: Chapter 11 shows that many of the themes in Chap-
ters 1-10 become reconciled further on. The classical class number formula
reconciles the analytic stream of ideas with the algebraic. We also discuss —
necessarily in general terms - the L-function associated with an elliptic curve
and the conjectures of Birch and Swinnerton-Dyer, which draw together the
elliptic, algebraic and analytic streams. The underlying motif is the theory
of L-functions. As we enter a new millennium, it has become clear that one
of the ways into the deepest parts of number theory requires a better under-
standing of these fundamental objects.

The third belief is that number theory is a living subject, even when stud-
ied at an elementary level. The onset of electronic computing gave the subject
an enormous boost, and it is a pleasure to be able to record some recent devel-
opments. The language of arithmetical complexity has helped to change the
way we think about numbers. Modern computers can carry out calculations
with numbers that are almost unimaginably large. We recommend that any
reader unfamiliar with modern number theory packages tries a few experi-
ments using some of the excellent free software available from the internet. To
start to think of the issues raised by large integer calculation can be no bad
thing. Intellectually too, this computational topic illustrates an interesting
point about the enduring nature of the paradigm. Our story begins over two
millennia ago, yet it is the same questions that continue to fascinate us. What
are the primes like? Where can they be found? How can the prime factors of
an integer be computed? Whether these questions will endure awhile longer
nobody can tell. The history of these problems already presents a fascinating
story worth telling, and one that says a lot about one of the most important
and beautiful narratives of enquiry in human history — mathematics.

One of the most striking and pleasurable aspects of number theory is the
extent of time and range of cultures over which it has been studied. We do
not go into a detailed history of the developments described here, but the
names and places given in the list of “Dramatis Personae” should give some
idea of how widely number theory has been studied. The names in this list are
rather crudely Anglicized and the locations somewhat arbitrarily modernized.
The many living mathematicians who have made significant contributions to
the topics covered here have been omitted but may be found on the Web
site in [113]. A densely written, comprehensive review of number theory up
to about 1920 may be found in Dickson’s history {42], [43], [44]; a discursive
and masterly account of the four millennia ending in 1798 is provided by
Weil [157].



Introduction 3

Finally, we say something about the way this book could be used. It is
based on three courses taught at the University of East Anglia on various
aspects of number theory (analytic, algebraic/geometric, and computational),
mostly at the final-year undergraduate level. We were motivated in part by
G. A. and J. M. Jones’ attractive book [84]. Their book sets out to deal with
the subject as it is actually taught. Typically, third-year students will not
have done a course in number theory and their experience will necessarily
be fragmentary. Like [84], our book begins in quite an elementary way. We
have found that the different years at a university do not equate neatly with
different abilities: Students in their early years can often be stretched well
beyond what seems possible, and upper-level students do not complain about
beginning in simple ways. We will try to show how different chapters can
be put together to make a course; the book can be used as a basis for two
upper-level courses and one at an intermediate level.

We thank many people for contributing to this text. Notable among them
are Christian Rottger, for writing up notes from an analytic number theory
course at UEA; Sanju Velani, for making available notes from his analytic
number theory course; several cohorts of UEA undergraduates for feedback on
lecture courses; Neal Koblitz and Joe Silverman for their inspiring books; and
Elena Nardi for help with the ancient Greek in Section 1.7.1. We thank Karim
Belabas, Robin Chapman, Sue Everest, Gareth and Mary Jones, Graham
Norton, David Pierce, Peter Pleasants, Christian Rottger, Alice Silverberg,
Shaun Stevens, Alan and Honor Ward, and others for pointing out errors and
suggesting improvements. Errors and solecisms that remain are entirely the
authors’ responsibility.

February 14, 2005 Graham Everest
Norwich, UK Thomas Ward

NOTATION AND TERMINOLOGY

“Arithmetic” is used both as a noun and an adjective. The particular nota-
tion used is collected at the start of the index. The symbols N, P, Z, Q, R, C
denote the natural numbers {1,2,3,...}, prime numbers {2,3,5,7,...}, in-
tegers, rational numbers, real numbers, and complex numbers, respectively.
Any field with ¢ = p" elements, p € P and r € N, is denoted F,, and F;
denotes its multiplicative group; the field F,, p € P, is identified with the
set {0,1,...,p ~ 1} under addition and multiplication modulo p. For a com-
plex number s = o +it, R(s) = o and J(s) = t denote the real and imaginary
parts of s respectively. The symbol | means “divides”, so for a,b € Z, alb if
there is an integer k with ak = b. For any set X, | X| denotes the cardinality
of X. The greatest common divisor of a and b is written ged(a, b). Products
are written using - asin 12 = 3-4orn! = 1-2---(n — 1) - n. The order
of growth of functions f,g (usually these are functions N — R) is compared
using the following notation:



4 Introduction

f~giff(x) —r1asx — oo;

9(=)
f = O(g) if there is a constant A > 0 with f(z) < Ag(z) for all z;
f=olg) if@—)Oasz—)oo.
g(z)

In particular, f = O(1) means that f is bounded. The relation f = O(g) will
also be written f <« g, particularly when it is being used to express the fact
that two functions are commensurate, f < g < f. A sequence a;,aq,. .. will
be denoted (ay).

REFERENCES

The references are not comprehensive, and material that is not explicitly cited
is nonetheless well-known. It is inevitable that we have borrowed ideas and
used them inadvertently without citation; we apologize for any egregious in-
stances of this. The general references that are likely to be most accessible
without much background are as follows. For Chapter 2, [147]; for Chapters 3
and 4, [77], [96], [147], and [154]; for Chapters 5-7, [27] and [143}; for Chap-
ters 8-10, [4], [75], and [81]; for Chapter 9, [6]; and for Chapter 12, [21], {22},
[36], [90], and [66].

PossiBLE COURSES

A course on analytic number theory could follow Chapters 1, 8, 9, and 10;
one on Diophantine problems or elliptic curves could follow Chapters 1, 2, 5,
6, and 7. A lower-level course on algebraic number theory could be based on
Chapters 1, 2, 3 and 4; one on complexity could be based on Chapters 1 and 12.
(These could also be used for the complexity part of a course on cryptography.)
The exercises are generally routine applications of the methods in the text,
but exercises marked * are to be viewed as projects, some of them requiring
further reading and research.
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Euclid of Alexandria 325 B.C.-265 B.C. Greece, Egypt
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276 B.C.-194 B.C. Libya, Greece, Egypt

Diophantus of Alexandria 200284 Greece, Egypt
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Sun Zi 400-460 China
Brahmagupta 598-670 India

Abu Ali al-Hasan ibn al-Haytham 965-1040 Iraq, Egypt
Bhaskaracharya 1114-1185 India

Leonardo Pisano Fibonacci 1170-1250 Italy

Qin Jiushao 1202-1261 China

Pietro Antonio Cataldi 1548-1626 Italy

Claude Gaspar Bachet de Méziriac 1581-1638 France

Marin Mersenne 1588-1648 France

Pierre de Fermat 1601-1665 France

James Stirling 1692-1770 Scotland
Leonhard Euler 1707-1783 Switzerland, Russia
Joseph-Louis Lagrange 1736-1813 Italy, France
Lorenzo Mascheroni 1750-1800 Italy, France
Adrien-Marie Legendre 1752-1833 France

Jean Baptiste Joseph Fourier 1768-1830 France

Johann Carl Friedrich Gauss 1777-1855 Germany
Siméon Denis Poisson 1781-1840 France

August Ferdinand Mabius 1790-1868 Germany

Niels Henrik Abel 1802-1829 Norway

Carl Gustav Jacob Jacobi 1804-1851 Germany
Johann Peter Gustav Lejeune Dirichlet 1805-1859 France, Germany
Joseph Liouville 1809-1882 France

Ernst Eduard Kummer 1810-1893 Germany
Evariste Galois 1811-1832 France

Karl Theodor Wilhelm Weierstrass 1815-1897 Germany
Pafnuty Lvovich Tchebychef 1821-1894 Russia

Georg Friedrich Bernhard Riemann 1826-1866 Germany, Italy
Francois Edouard Anatole Lucas 1842-1891 France

Jules Henri Poincaré 1854-1912 France

David Hilbert 1862-1943 Germany
Srinivasa Aiyangar Ramanujan 1887-1920 India, England
Louis Joel Mordell 1888-1972 USA, England
Carl Ludwig Siegel 1896-1981 Germany

Emil Artin 1898-1962 Austria, Germany
Kurt Mahler 1903-1988 Germany, UK, Australia
Derrick Henry Lehmer 1905-1991 USA

André Weil 1906-1998 France, USA
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A Brief History of Prime

Most of the results in this book grow out of one theorem that has probably
been known in some form since antiquity.

Theorem 1.1. [FUNDAMENTAL THEOREM OF ARITHMETIC] Every integer

greater than 1 can be expressed as a product of prime numbers in a way that
1S unique up to order.

For the moment, we are using the term prime in its most primitive form —
to mean an irreducible integer greater than one. Thus a positive integer p is
prime if p > 1 and the factorization p = ab into positive integers implies that
either @ = 1 or b = 1. The expression “up to order” means simply that we
regard, for example, the two factorizations 6 = 2-3 = 3 - 2 as the same.

Theorem 1.1, the Fundamental Theorem of Arithmetic, will reverberate
throughout the text. The fact that the primes are the building blocks for all
integers already suggests they are worth particular study, rather in the way
that scientists study matter at an atomic level. In this case, we need a way of
looking for primes and methods to construct them, identify them, and even
quantify their appearance if possible. Some of these quests took thousands of
years to fulfill, and some are still works in progress. At the end of this chapter,
we will give a proof of Theorem 1.1, but for now we want to get on with our
main theme.

1.1 Euclid and Primes

The first consequence of the Fundamental Theorem of Arithmetic for the
primes is that there must be infinitely many of them.

Theorem 1.2. [EucLID] There are infinitely many primes.

To emphasize the diversity of approaches to number theory, we will give
several proofs of this famous result.
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EucLID’S PROOF IN MODERN FORM. If there are only finitely many primes,
we can list them as p;,...,p,. Let

N=p-p+1>1.

By the Fundamental Theorem of Arithmetic, N can be factorized, so it must
be divisible by some prime p; of our list. Since p; also divides p; - - p,, it
must divide the difference

N-pr-pr=1,
which is impossible, as p, > 1. a

EULER’S ANALYTIC PROOF. Assume that there are only finitely many primes,
so they may be listed as py,...,p,. Consider the product

r 1 -1
Xﬁﬂ(l‘;:)-

The product is finite since 1 is not a prime and by hypothesis there are only
finitely many primes. Now expand each factor into a convergent geometric
series,

S S U S
1-2 p P P '

For any fixed K, we deduce that

LENESE R SR S
1-277"p p? pK’

Putting this into the equation for X gives

11 1 1 1 1
X?(1+—+2—2+---+2—K)-(1+—+-—-+---+§7)

2 3 32
.(1+l+l+...+_1_).._(1+l+_1_+...+_1_)

5 52 5K pr P2 pk
-_—]_+}_+l+l+...

273714
- .17; (1.1)
neN(K)

where

N(K)={neN|n=p§  pre <K for all i}

denotes the set of all natural numbers with the property that each prime
factor appears no more than K times. Notice that the identity (1.1) requires
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the Fundamental Theorem of Arithmetic. Given any number n € N, if K is
large enough, then n € N(K), so we deduce that

The series on the right-hand side (known as the harmonic series) diverges
to infinity, but X is finite. Again we have reached a contradiction from the
assumption that there are finitely many primes. 0

Let us recall why the harmonic series diverges to infinity. As with Theo-
rem 1.2, there are many ways to prove this; the first is elementary, while the
second compares the series with an integral.

ELEMENTARY PROOF. Notice that

1+1>1
2/2’
3 472
1 1 1 1
= ~ p —2—7
tst7te7 2
and so on. For any k > 1,
1 1 1 L 11
— b —— 2. =
2‘°+1+2k+2+ t o 2k+1 2
This means that
1k
Y -z forallkz1,
n 2
n=1
=1
and it follows that Z = diverges. O
nzln

Hidden in the last argument is some indication of the rate at which the
harmonic series diverges. Since the sum of the first 27! terms exceeds k/2,
the sum of the first N terms must be approximately Clog N for some positive
constant C. The second proof improves on this: Equation (1.2) gives a sharper
lower bound as well as an upper bound.

oo
1 . .
Exercise 1.1. Try to prove that Z 3 diverges using the same technique
n=1
of grouping terms together. Of course, this will not work since this series

converges, but you will see something mildly interesting. In particular, can
you use this to estimate the sum?



