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Preface

With the presentation at an introductory level, this book contains a comprehensive
treatment of continuous-time and discrete-time signals and systems, with demos on the
textbook website, data downloaded from the Web, and illustrations of numerous MAT-
LAB® commands for the solution of a wide range of problems arising in engineering
and in other fields such as financial data analysis. The third edition is a major revision
of the previous edition in that the degree of mathematical complexity has been re-
duced, practical applications involving downloaded data and other illustrations have
been added, and the material has been reorganized in a significant way so that the flex-
ibility in using the book in a one-quarter or one-semester course should be greatly en-
hanced. Highlights of the revised content of the third edition include the following:

L

The presentation has been simplified by deletion or rewrite of various mathe-
matical parts of the previous edition, and by inclusion of new illustrations that
should give additional insight into the meaning and significance of the mathe-
matical formulations covered in the text. Summaries have been added at the end
of the chapters to highlight the material covered in the chapters.

The core of the new edition consists of Chapters 1-7, most of which an instructor
should be able to cover in a one-quarter course. For a one-semester course, an in-
structor should be able to cover the material in Chapters 1-7 and then select ma-
terial on filtering, controls, and/or the state representation that can be found in
Chapters 8-11.

The new edition contains practical applications that use actual data downloaded
from the Web. It is shown how the data can be downloaded and then imported into
MATILARB for analysis by techniques covered in the text. The focus is on the prob-
lem of data analysis in the presence of noise, which often arises in engineering, busi-
ness and finance, and other fields. Details are given on the analysis of stock price
data with the objective of determining if the trend in the stock price is up or down.

The new edition contains a major enhancement of the MATLAB component.
In particular, the MATLAB Symbolic Math Toolbox that is available in the Stu-
dent Version (7.0.1) of MATLAB is used throughout the text to complement
and simplify various computational aspects of the theory and examples given in

v



Preface vii

The book includes a wide range of examples and problems on different areas in
engineering, including electrical circuits, mechanical systems, and electromechanical
devices (such as a dc motor). Examples are also given on data analysis, with part of the
emphasis on the filtering or smoothing of noisy data (such as stock price data) for the
purpose of revealing the trend of the data. It is also shown how the dominant cyclic
components can be determined and extracted from time series data by use of the dis-
crete Fourier transform (DFT). Other features of the book are a parallel treatment of
continuous-time and discrete-time signals and systems, and three chapters on feedback
control, digital filtering, and the state representation that prepare students for senior
electives in these topics.

The book begins with the time-domain aspects of signals and systems in Chapters
1 and 2. These include the basic properties of signals and systems, the discrete-time con-
volution model, the input/output difference equation model, the input/output differen-
tial equation model, and the continuous-time convolution model. Chapter 3 begins the
treatment of signals and systems from the frequency-domain standpoint. Starting with
signals that are a sum of sinusoids, the presentation then goes into the Fourier series
representation of periodic signals and on to the Fourier transform of nonperiodic sig-
nals. The use of the Fourier transform in the study of signal modulation is also consid-
ered in Chapter 3. Chapter 4 deals with the Fourier analysis of discrete-time signals with
the focus on the discrete-time Fourier transform (DTFT) and the discrete Fourier trans-
form (DFT). The DFT is used to determine the dominant sinusoidal components of a
discrete-time signal in the presence of noise, with applications given in terms of data
downloaded from the Web. Then in Chapter 5, the Fourier theory is applied to the study
of both continuous-time and discrete-time systems. Applications to ideal analog filter-
ing, sampling, signal reconstruction, and digital filtering are pursued in Chapter 5.

After the Fourier theory, the study of the Laplace transform begins in Chapter 6
with the definition and properties of the Laplace transform and the transfer function
representation of linear time-invariant continuous-time systems. In Chapter 7, the z-
transform is introduced, and the transfer function representation of linear time-invariant
discrete-time systems is pursued. This leads to the notion of the frequency response func-
tion, which is first considered in Chapter 5. In Chapter 8, the analysis of linear time-
invariant continuous-time systems is carried out by the use of the transfer function
representation. The transfer function framework is then applied to the problem of control
in Chapter 9; and in Chapter 10, the Laplace and z-transform frameworks are applied
to the design of digital filters and controllers. In Chapter 11, the fundamentals of the
state description of linear time-invariant continuous-time and discrete-time systems
are presented. '

As noted, the book can be used in a one-quarter or one-semester course in signals
and systems, with Chapters 1-7 (or parts of these chapters) covered in a one-quarter
course and parts of Chapters 1-11 covered in a one-semester course. By selecting appro-
priate sections and chapters from the book, an instructor could cover the continuous-time
case in one course and the discrete-time case in a second course.

The authors wish to thank the faculty who have used the previous editions of the
book in a course, and the students who have taken a course with the book designated as
the course text, for their numerous helpful comments. We also appreciate the written com-
ments made by the following reviewers: Professor Charles W. Brice, University of South
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Carolina; Professor Ravi Warrier, Kettering University; Professor Jeffrey G. Andrews,
University of Texas at Austin; Professor Stanley Lawrence Marple, Jr., Oregon State Uni-
versity; and Professor Uvais Qidwai, Tulane University.

We would also like to thank Tom Robbins (formerly Editor at Prentice Hall) for
his comments on the previous editions of the book, Prentice Hall Editor Michael
McDonald for his suggestions regarding the third edition, and Alice Dworkin and Scott
Disanno of Prentice Hall for their efforts regarding editorial aspects and production of
the third edition. Thanks go to Courtney Esposito at The Mathworks for providing us
with information on the latest versions of the MATLAB and Simulink software pro-
grams. Bonnie Heck wishes to thank her former students John Finney and James
Moan, who wrote preliminary versions of the MATLAB tutorial that is available on
the website; and Darren Garner, James Ho, Jason Meeks, Johnny Wang, and Brian Wilson
for their efforts in generating the demos that are on the website.

EDWARD W. KAMEN
BonnIE S. HECK
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CHAPTER

Fundamental Concepts

The concepts of signals and systems arise in virtually all areas of technology, including electrical circuits, communi-
cation devices, sighal processing devices, robotics and automation, automobiles, aircraft and spacecraft, biomedical
devices, chemical processes, and heating and cooling devices. The concepts of signals and systems are also of great
importance in other areas of human endeavor, such as in science and economics. In this chapter various fundamental
aspects of signals and systems are considered. The chapter begins with a brief introduction to continuous-time and
discrete-time signals given in Sections 1.1 and 1.2. In Section 1.2 it is shown how discrete-time data can be acquired
for analysis by downloading data from the Web. Then in Section 1.3 the concept of a system is introduced, and in
Section 1.4 three specific examples of a system are given. In Section 1.5 of the chapter, the basic system properties
of causality, linearity, and time invariance are defined. A summary of the chapter is given in Section 1.6.

1.1 CONTINUOUS-TIME SIGNALS

A signal x(t) is a real-valued, or scalar-valued, function of the time variable . The term
real valued means that for any fixed value of the time variable #, the value of the signal at
time ¢ is a real number. When the time variable ¢ takes its values from the set of real
numbers, ¢ is said to be a continuous-time variable and the signal x(¢) is said to be a
continuous-time signal or an analog signal. Common examples of continuous-time signals
are voltage or current waveforms in an electrical circuit, audio signals such as speech
or music waveforms, positions or velocities of moving objects, forces or torques in a
mechanical system, bioelectric signals such as an electrocardiogram (ECG) or an elec-
troencephalogram (EEG), flow rates of liquids or gases in a chemical process, and so on.

Given a signal x(¢) that is very complicated, it is often not possible to determine a
mathematical function that is exactly equal to x(). An example is a speech signal, such
as the 50-millisecond (ms) segment of speech shown in Figure 1.1. The segment of
speech shown in Figure 1.1 is the “sh”-to-“u” transition in the utterance of the word
“should.” Due to their complexity, signals such as speech waveforms are usually not
specified in mathematical form. Instead, they may be given by a set of sample values.
For example, if x(f) denotes the speech signal in Figure 1.1, the signal can be represented
by the set of sample values

{x(tO), x(tl)1 X(IZ)a x(t3)’ SRR x(tN)}
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Air pressure in vocal tract
<)

1 ! | | | 1
0 10 20 30 40 50

Time (ms)

FIGURE 1.1
Segment of speech.

where x(t;) is the value of the signal at time ¢,i = 0,1,2,..., N, and N + 1 is the
number of sample points. This type of signal representation can be generated by sam-
pling the speech signal. Sampling is discussed briefly in Section 1.2 and then is studied
in depth in later chapters.

In addition to the representation of a signal in mathematical form or by a set of
sample values, signals can also be characterized in terms of their “frequency content” or
“frequency spectrum.” The representation of signals in terms of the frequency spectrum
is accomplished by using the Fourier transform, which is studied in Chapters 3 to 5.

Some simple examples of continuous-time signals that can be expressed in math-
ematical form are given next.

Step and Ramp Functions

Two simple examples of continuous-time signals are the unit-step function u(z) and the
unit-ramp function r(¢). These functions are plotted in Figure 1.2.

u(t) o)

~

~
—_——t— — —
N ———— -

(@) (b)

FIGURE 1.2
{a) Unit-step and (b) unit-ramp functions.



Section 1.1 Continuous-Time Signals 3

The unit-step function u(t) is defined mathematically by

1, 120
“(’):{0 1 <0

Here unit step means that the amplitude of u(f) is equal to 1 for all ¢+ = 0. [Note that
u(0) = 1; in some textbooks, #(0) is defined to be zero.] If K is an arbitrary nonzero
real number, Ku(¢) is the step function with amplitude K for ¢t = 0.

For any continuous-time signal x(¢), the product x()u(z) is equal to x(¢) fort = 0
and is equal to zero for ¢t < 0. Thus multiplication of a signal x(f) with u(f) eliminates
any nonzero values of x() for t < 0.

The unit-ramp function r(t) is defined mathematically by

t, t=90
'(t):{o 1< 0

Note that for ¢t = 0, the slope of #(¢) is 1. Thus r(¢) has “unit slope,” which is the reason
r(¢) is called the unit-ramp function. If K is an arbitrary nonzero scalar (real number),
the ramp function Kr(¢) has slope K for ¢t = 0.

The unit-ramp function r(¢) is equal to the integral of the unit-step function u(¢);
that is,

r(t) = / t u(A) dA

~00

Conversely, the first derivative of r(r) with respect to ¢ is equal to u(¢), except at t = 0,
where the derivative of r(¢) is not defined.

The Impulse
The unit impulse 8(t), also called the delta function or the Dirac distribution, is defined by

5(t) =0, t #0

&
/ 8(A) dA = 1, for any real number ¢ > 0

&

The first condition states that 8(¢) is zero for all nonzero values of ¢, while the second
condition states that the area under the impulse is 1, so 5(¢) has unit area.

It is important to point out that the value §(0) of 8(¢) at ¢+ = 0 is not defined; in
particular, 8(0) is not equal to infinity. The impulse §(¢) can be approximated by a
pulse centered at the origin with amplitude A and time duration 1/4, where A is a very
large positive number. The pulse interpretation of 5(¢) is displayed in Figure 1.3.

For any real number K, K&(t) is the impulse with area K. It is defined by

Ké(t) =0, t#0

/ K&(A) dA = K, for any real number & > 0
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[ 165)

_ﬁ/ 1

N|

FIGURE 1.3
Pulse interpretation of 8(t).

Ko()

X

FIGURE 1.4
Graphical representation of the impulse K5(t).

The graphical representation of K&(z) is shown in Figure 1.4. The notation “(K)”
in the figure refers to the area of the impulse K§(¢).

The unit-step function u(f) is equal to the integral of the unit impulse 5(¢); more
precisely,

t
u(t) = / 8(A) dA, all t exceptt = 0

—00

To verify this relationship, first note that for ¢ < 0,

t
/ 8(A) dA = 0, since 8(¢) = Oforallz < 0

—o0

Fort > 0,

t t £
/ 8(A) dr = /8()\) dix = 1,since/ 8(A) dA = 1foranye > 0
—00 —t —&



113

Signals

Sounds

Section 1.1 Continuous-Time Signals 5

Periodic Signals
Let T be a fixed positive real number. A continuous-time signal x(?) is said to be periodic
with period T if

x(t + T) = x(t)forallt, —00 <t < 00 (L.1)

Note that if x(¢) is periodic with period T, it is also periodic with period g7, where q is
any positive integer. The fundamental period is the smallest positive number T for
which (1.1) holds.

An example of a periodic signal is the sinusoid

x(t) = Acos(et + 0), —00 < f < 00 (1.2)

Here A is the amplitude, w the frequency in radians per second (rad/sec), and 6 the
phase in radians. The frequency fin hertz (Hz) (or cycles per second) is f = w/2w.

To see that the sinusoid given by (1.2) is periodic, note that for any value of the
time variable ¢,

2
A cos[w(t + %) + 0] = Acos(wt + 27 + 6) = Acos(et + 0)

Thus the sinusoid is periodic with period T = 2/w, and in fact, 27/w is the fundamen-
tal period. The sinusoid x(¢) = A cos{wt + 6) is plotted in Figure 1.5 for the case when
—m/2 < 8 < 0.Note thatif 8 = —x/2, then

x(t) = Acos(wt + 0) = Asinwt

An important question for signal analysis is whether or not the sum of two periodic
signals is periodic. Suppose that x;(¢) and x,(t) are periodic signals with fundamental

Acos(wt + )

AL
_x+26 - 26
2w \ / 2w
< t

0
3 — 26
2w

_3n+26
2w

|
gl

—-A4

FIGURE 1.5
Sinusoid x(t) = A cos(wt + @) with —m/2 < @ < 0.
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periods T; and T», respectively. Then is the sum x,(¢) + x,() periodic; that is, is there a
positive number T such that

x1(t + T) + x3(t + T) = xy(t) + xp(t) foralls? (1.3)

It turns out that (1.3) is satisfied if and only if the ratio 73/T; can be written as the ratio
g/r of two integers g and r. This can be shown by noting that if 73/T; = g/r, then
rTy = qT,, and since r and q are integers, x;(t) and x,(¢) are periodic with period rT;.
Thus the expression (1.3) follows with T = rT;. In addition, if r and ¢q are coprime
(i.e., 7 and g have no common integer factors other than 1), then 7' = rT; is the funda-
mental period of the sum x,(¢) + x,(¢).

Example 1.1 Sum of Periodic Signals
Let x,(t) = cos(w1/2) and x,(t) = cos(mrt/3). Then xy(t) and x,(t) are periodic with fundamen-
tal periods 77 = 4 and T, = 6, respectively. Now
i 4
T, 6

Then with ¢ = 2 and r = 3, it follows that the sum x;(¢) + x,(¢) is periodic with funda-
mental period r7; = (3)(4) = 12 seconds.

Time-Shifted Signals

Given a continuous-time signal x(?), it is often necessary to consider a time-shifted ver-
sion of x(¢): If t, is a positive real number, the signal x(¢ — #;) is x(¢) shifted to the right by
t; seconds and x(¢ + t;) is x(¢) shifted to the left by #; seconds. For instance, if x(f) is the
unit-step function u(¢) and ¢; = 2, then u(t — t;) is the 2-second right shift of x(f) and
u(t + ;) is the 2-second left shift of u(r). These shifted signals are plotted in Figure 1.6.
To verify that u(¢r — 2) is given by the plot in Figure 1.6a, evaluate u(¢ — 2) for various
values of . For example, u(t — 2) = u(-2) =0whent =0,u(t —2) =u(-1)=0
whent = 1,u{t — 2) = u(0) = 1 when ¢t = 2, and so on.

u(t — 2) u(t + 2)

.
4
-

FIGURE 1.6
Two-second shifts of u(2): (a) right shift; (b) left shift.



115

Section 1.1 Continuous-Time Signals 7

For any fixed positive or negative real number ¢, the time shift K&6(¢ — ¢) of the
impulse K8(1) is equal to the impulse with area K located at the point ¢t = #; in other
words,

KS([ — tl) = O, t# tl
t+e
Ké(A—t)dr =K, anye>0
ti—e
The time-shifted unit impulse 8(¢ — #;) is useful in defining the sifting property of
the impulse given by

t+e

f(A)8(A — 1) dr = f(t,), foranye >0

t—¢

where f(t) is any real-valued function that is continuous at # = ¢,. (Continuity of a function
is defined subsequently.) To prove the sifting property, first note that since (A — t;) = 0
forall A # 1, it follows that

FA)8(A — 1) = f(t)8(A — 1))

Thus

FOSA — 1) dA = £(1) / " S(h — 1) da

= f(n)

which proves the sifting property.

Continuous and Piecewise-Continuous Signals

A continuous-time s1gnal x(2) is said to be discontinuous at a fixed point ¢; if x(£7) # x(¢7),
where #; — t7 and ] — ¢ are infinitesimal positive numbers, Roughly speaking, a signal
x(?) is discontinuous at a point ¢ if the value of x(f) “jumps in value” as ¢ goes through the
point #;.

A signal x(¢) is continuous at the point ¢; if x(¢7) = x(t;) = x(¢]). If a signal x(¢)
is continuous at all points £, x(¢) is said to be a continuous signal. The reader should
note that the term continuous is used in two different ways; that is, there is the notion
of a continuous-time signal and there is the notion of a continuous-time signal that is
continuous (as a function of r). This dual use of continuous should be clear from the
context.

Many continuous-time signals of interest in engineering are continuous. Exam-
ples are the ramp function Kr(f) and the sinusoid x(t) = A cos(wt + ). Another
example of a continuous signal is the triangular pulse function displayed in Figure 1.7.
As indicated in the figure, the triangular pulse is equal to (2t/7) + 1for—72 =t < 0
and is equal to (—2t/t) + 1 for0 = ¢t < 7/2.



