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Preface

This textbook covers both direct and iterative methods for the solution of linear
systems, least squares problems, eigenproblems, and the singular value decom-
position. Earlier versions have been used by the author in graduate classes in
the Mathematics Department of the University of California at Berkeley since
1990 and at the Courant Institute before then.

In writing this textbook I aspired to meet the following goals:

1. The text should be attractive to first-year graduate students from a va-
riety of engineering and scientific disciplines.

2. It should be self-contained, assuming only a good undergraduate back-
ground in linear algebra.

3. The students should learn the mathematical basis of the field, as well as
how to build or find good numerical software.

4. Students should acquire practical knowledge for solving real problems
efficiently. In particular, they should know what the state-of-the-art
techniques are in each area or when to look for them and where to find
them, even if I analyze only simpler versions in the text.

5. It should all fit in one semester, since that is what most students have
available for this subject.

Indeed, I was motivated to write this book because the available textbooks,
while very good, did not meet these goals. Golub and Van Loan’s text [121]
is too encyclopedic in style, while still omitting some important topics such as
multigrid, domain decomposition, and some recent algorithms for eigenvalue
problems. Watkins’s [252] and Trefethen’s and Bau’s [243] also omit some
state-of-the-art algorithms. _

While I believe that these five goals were met, the fifth goal was the hardest
to manage, especially as the text grew over time to include recent research re-
sults and requests from colleagues for new sections. A reasonable one-semester
curriculum based on this book would cover

e Chapter 1, excluding section 1.5.1;
e Chapter 2, excluding sections 2.2.1, 2.4.3, 2.5, 2.6.3, and 2.6.4;

e Chapter 3, excluding sections 3.5 and 3.6;

ix



X Preface

e Chapter 4, up to and including section 4.4.5;
e Chapter 5, excluding sections 5.2.1, 5.3.5, 5.4 and 5.5;

e Chapter 6, excluding sections 6.3.3, 6.5.5, 6.5.6, 6.6.6, 6.7.2, 6.7.3, 6.7.4,
6.8, 6.9.2, and 6.10; and

e Chapter 7, up to and including section 7.3.
Notable features of this book include

e a class homepage with Matlab source code for examples and homework
problems in the text;

e frequent recommendations and pointers to the best software currently
available (from LAPACK and elsewhere);

e a discussion of how modern cache-based computer memories impact al-
gorithm design;

e performance comparisons of competing algorithms for least squares and
symmetric eigenvalue problems;

e a discussion of a variety of iterative methods, from Jacobi’s to multigrid,
with detailed performance comparisons for solving Poisson’s equation on
a square grid;

o detailed discussion and numerical examples for the Lanczos algorithm for
the symmetric eigenvalue problem,;

¢ numerical examples drawn from fields ranging from mechanical vibrations
to computational geometry;

e sections on “relative perturbation theory” and corresponding high-accuracy
algorithms for symmetric eigenvalue problems and the singular value de-
composition; and

¢ dynamical systems interpretations of eigenvalue algorithms.

The URL for the class homepage will be abbreviated to HOMEPAGE
throughout the text, standing for http://www.siam.org/books/demmel/
demmel _class. Two other abbreviated URLs will be used as well. PARALLEL._
HOMEPAGE is an abbreviation for http://www.siam.org/books/demmel/
demmel_parallelclass and points to a related on-line class by the author on
parallel computing. NETLIB is an abbreviation for http://www.netlib.org.

Homework problems are marked Easy, Medium, or Hard, according to their
difficulty. Problems involving significant amounts of programming are marked
“programming.”



Preface xi

Many people have contributed to this text. Most notably, Zhaojun Bai used
this text at Texas A&M and the University of Kentucky, contributed numer-
ous questions, and made many useful suggestions. Alan Edelman (who used
this book at MIT), Martin Gutknecht (who used this book at ETH Zurich),
Velvel Kahan (who used this book at Berkeley), Richard Lehoucq, Beresford
Parlett, and many anonymous referees made detailed comments on various
parts of the text. In addition, Alan Edelman and Martin Gutknecht provided
hospitable surroundings while this final edition was being prepared. Table 2.2
is taken from the Ph.D. thesis of my former student Xiaoye Li. Mark Adams,
Tzu-Yi Chen, Inderjit Dhillon, Jian Xun He, Melody Ivory, Xiaoye Li, Bernd
Pfrommer, Huan Ren, and Ken Stanley, along with many other students at
Courant, Berkeley, Kentucky, and MIT over the years, helped debug the text.
Bob Untiedt and Selene Victor were of great help in typesetting and producing
figures. Megan supplied the cover photo. Finally, Kathy Yelick has contributed
support over more years than either of us expected this project to take.

James Demmel
Berkeley, California
June 1997
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Introduction

1.1. Basic Notation

In this course we will refer frequently to matrices, vectors, and scalars. A
matrix will be denoted by an upper case letter such as A, and its (i, 7)th
element will be denoted by a;;. If the matrix is given by an expression such
as A+ B, we will write (A + B);;. In detailed algorithmic descriptions we will
sometimes write A(%,j) or use the Matlab™ ! [184] notation A(i : 5,k : ) to
denote the submatrix of A lying in rows ¢ through j and columns & through
l. A lower-case letter like z will denote a vector, and its ith element will
be written z;. Vectors will almost always be column vectors, which are the
same as matrices with one column. Lower-case Greek letters (and occasionally
lower-case letters) will denote scalars. R will denote the set of real numbers;
R™, the set of n-dimensional real vectors; and R™*", the set of m-by-n real
matrices. C, C?, and C™*" denote complex numbers, vectors, and matrices,
respectively. Occasionally we will use the shorthand A™*” to indicate that 4 is
an m-by-n matrix. AT will denote the transpose of the matrix A: (AT)ij = ajs.
For complex matrices we will also use the conjugate transpose A*: (A*)y; = ;.
Rz and Fz will denote the real and imaginary parts of the complex number
z, respectively. If A is m-by-n, then |A| is the m-by-n matrix of absolute
values of entries of A: (|A|)i; = |ai;|. Inequalities like |A| < |B| are meant
componentwise: |a;;| < |b;;( for all ¢ and j. We will also use this absolute value
notation for vectors: (|z]); = |z;}. Ends of proofs will be marked by O, and
ends of examples by ¢. Other notation will be introduced as needed.

1.2. Standard Problems of Numerical Linear Algebra

We will consider the following standard problems:

Matlab is a registered trademark of The MathWorks, inc., 24 Prime Park Way,
Natick, MA 01760, USA, tel. 508-647-7000, fax 508-647-7001, info@mathworks.com,
http://wuv.mathworks.com.



2 Applied Numerical Linear Algebra

o Linear systems of equations: Solve Ax = b. Here A is a given n-by-n
nonsingular real or complex matrix, b is a given column vector with n
entries, and z is a column vector with n entries that we wish to compute.

e Least squares problems: Compute the z that minimizes |Az — b||2. Here
A is m-by-n, b is m-by-1, z is n-by-1, and (jyflz = /2, |3i|® is called
the two-norm of the vector y. If m > n so that we have more equations
than unknowns, the system is called overdetermined. In this case we
cannot generally solve Ax = b exactly. If m < n, the system is called
underdetermined, and we will have infinitely many solutions.

o FEigenvalue problems: Given an n-by-n matrix A, find an n-by-1 nonzero
vector z and a scalar A so that Az = Azx.

o Singular value problems: Given an m-by-n matrix A, find an n-by-1

- nonzero vector z and scalar A so that AT Az = Az. We will see that this
special kind of eigenvalue problem is important enough to merit separate
consideration and algorithms.

We choose to emphasize these standard problems because they arise so
often in engineering and scientific practice. We will illustrate them throughout
the book with simple examples drawn from engineering, statistics, and other
fields. There are also many variations of these standard problems that we will
consider, such as generalized eigenvalue problems Az = ABz (section 4.5) and
“rank-deficient” least squares problems min, |4z — b|[2, whose solutions are
nonunique because the columns of A are linearly dependent (section 3.5).

We will learn the importance of exploiting any special structure our problem
may have. For example, solving an n-by-n linear system costs 2/3n?® floating
point operations if we use the most general form of Gaussian elimination. If we
add the information that the system is symmetric and positive definite, we can
save half the work by using another algorithm called Cholesky. If we further
know the matrix is banded with semibandwidth \/n (i.e., a;; = 0if |i—j| > /n),
then we can reduce the cost further to O(n?) by using band Cholesky. If we
say quite explicitly that we are trying to solve Poisson’s equation on a square
using a 5-point difference approximation, which determines the matrix nearly
uniquely, then by using the multigrid algorithm we can reduce the cost to O(n),
which is nearly as fast as possible, in the sense that we use just a constant
amount of work per solution component (section 6.4).

1.3. General Techniques
There are several general concepts and techniques that we will use repeatedly:
1. matrix factorizations;

2. perturbation theory and condition numbers;
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3. effects of roundoff error on algorithms, including properties of floating
point arithmetic;
4. analysis of the speed of an algorithm;
5. engineering numerical software.

We discuss each of these briefly below.

1.3.1. Matrix Factorizations

A factorization of the matrix A is a representation of A as a product of several
“simpler” matrices, which make the problem at hand easier to solve. We give
two examples.

EXAMPLE 1.1. Suppose that we want to solve Az = b. If A is a lower trian-
gular matrix,

ain T by
az1 a2 T2 )
nl Gp2 ... Qun Tn bn

is easy to solve using forward substitution:

fori=1ton

z; = (bi — ch_:ll aikTk)/ Qi
end for

An analogous idea, back substitution, works if A is upper triangular. To
use this to solve a general system Az = b we need the following matrix factor-
ization, which is just a restatement of Gaussian elimination.

THEOREM 1.1. If the n-by-n matriz A is nonsingular, there exist a permu-
tation matriz P (the identity matriz with its rows permuted), a nonsingular
lower triangular matriz L, and a nonsingular upper triangular matrizc U such
that A=P-L-U. To solve Az = b, we solve the equivalent system PLUx = b
as follows:

LUz = P~ 'b= PTh (permute entries of b),

Uz = L~}(PTb) (forward substitution),

z=U"YL71PTb)  (back substitution).

We will prove this theorem in section 2.3. ©

ExAMPLE 1.2. The Jordan canonical factorization A = VJV ™! exhibits the
eigenvalues and eigenvectors of A. Here V is a nonsingular matrix, whose
columns include the eigenvectors, and J is the Jordan canonical form of A,
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a special triangular matrix with the eigenvalues of A on its diagonal. We
will learn that it is numerically superior to compute the Schur factorization
A =UTU*, where U is a unitary matrix (i.e., I’s columns are orthonormal)
and 7 is upper triangular with A’s eigenvalues on its diagonal. The Schur form
T can be computed faster and more accurately than the Jordan form J. We
discuss the Jordan and Schur factorizations in section 4.2. o

1.3.2. Perturbation Theory and Condition Numbers

The answers produced by numerical algorithms are seldom exactly correct.
There are two sources of error. First, there may be errors in the input data
to the algorithm, caused by prior calculations or perhaps measurement errors.
Second, there are errors caused by the algorithm itself, due to approximations
made within the algorithm. In order to estimate the errors in the computed
answers from both these sources, we need to understand how much the solution
of a problem is changed (or perturbed) if the input data are slightly perturbed.

EXAMPLE 1.3. Let f(x) be a real-valued differentiable function of a real vari-
able z. We want to compute f(z), but we do not know z exactly. Suppose
instead that we are given z + éx and a bound on éz. The best that we can
do (without more information) is to compute f(z + éz) and to try to bound
the absolute error |f(z + 6z) — f(z)|. We may use a simple linear approxima-
tion to f to get the estimate f(x + éz) ~ f(z) + éxf'(z), and so the error is
|f(z+6x) — f(z)| =~ |bz|- | f'(x)]. We call |f'(x)| the absolute condition number
of f at z. If |f'(x)| is large enough, then the error may be large even if 6z is
small; in this case we call f ill-conditioned at z. o

We say absolute condition number because it provides a bound on the
absolute error |f(z + 6z) — f(x)| given a bound on the absolute change |6z| in
the input. We will also often use the following essentially equivalent expression
to bound the error:

|[f(@+ 6z) — f(=)| _ 62| |f'(z)|-|a|

~o

|f ()| lz  1f@)I

"This expression bounds the relative error | f(z + 6z) — f(z)|/|f(z)| as a multi-
ple of the relative change |6x|/|z| in the input. The multiplier, |f'(z)] - |z|/|f(z)],
is called the relative condition number, or often just condition number for short.

The condition number is all that we need to understand how error in the
input data affects the computed answer: we simply multiply the condition
number by a bound on the input error to bound the error in the computed
solution.

For each problem we consider, we will derive its corresponding condition
number.
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1.3.3. Effects of Roundoff Error on Algorithms

To continue our analysis of the error caused by the algorithm itself, we need
to study the effect of roundoff error in the arithmetic, or simply roundoff for
short. We will do so by using a property possessed by most good algorithms:
backward stability. We define it as follows.

If alg(z) is our algorithm for f(z), including the effects of roundoft,
we call alg(z) a backward stable algorithm for f(z) if for all = there
is a “small” 6z such that alg(z) = f(z + 6x). dz is called the
backward error. Informally, we say that we get the exact answer
(f(z + 8z)) for a slightly wrong problem (z + éx).

This implies that we may bound the error as

error = |alg(z) — f(z)| = |f(z + 62) — f(=)| =~ |f'(z)| - |6z,

the product of the absolute condition number |f’(z)| and the magnitude of
the backward error |6z|. Thus, if alg(-) is backward stable, |6z| is always
small, so the error will be small unless the absolute condition number is large.
Thus, backward stability is a desirable property for an algorithm, and most
of the algorithms that we present will be backward stable. Combined with
the corresponding condition numbers, we will have error bounds for all our
computed solutions.

Proving that an algorithm is backward stable requires knowledge of the
roundoff error of the basic floating point operations of the machine and how
these errors propagate through an algorithm. This is discussed in section 1.5.

1.3.4. Analyzing the Speed of Algorithms

In choosing an algorithm to solve a problem, one must of course consider
its speed (which is also called performance) as well as its backward stability.
There are several ways to estimate speed. Given a particular problem instance,
a particular implementation of an algorithm, and a particular computer, one
can of course simply run the algorithm and see how long it takes. This may
be difficult or time consuming, so we often want simpler estimates. Indeed, we
typically want to estimate how long a particular algorithm would take before
implementing it.

The traditional way to estimate the time an algorithm takes is to count
the flops, or floating point operations, that it performs. We will do this for
all the algorithms we present. However, this is often a misleading time es-
timate on modern computer architectures, because it can take significantly
more time to move the data inside the computer to the place where it is to
be multiplied, say, than it does to actually perform the multiplication. This
is especially true on parallel computers but also is true on conventional ma-
chines such as workstations and PCs. For example, matrix multiplication on
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the IBM RS6000/590 workstation can be sped up from 65 Mflops (millions of
floating point operations per second) to 240 Mflops, nearly four times faster,
by judiciously reordering the operations of the standard algorithm (and using
the correct compiler optimizations). We discuss this further in section 2.6.

If an algorithm is iterative, i.e., produces a series of approximations con-
verging to the answer rather than stopping after a fixed number of steps, then
we must ask how many steps are needed to decrease the error to a toler-
able level. To do this, we need to decide if the convergence is linear (i.e.,
the error decreases by a constant factor 0 < ¢ < 1 at each step so that
|lerror;| < c- |error;—1|) or faster, such as quadratic (|error;| < c- |error;_1|2). If
two algorithms are both linear, we can ask which has the smaller constant c.
Iterative linear equation solvers and their convergence analysis are the subject
of Chapter 6.

1.3.5. Engineering Numerical Software

Three main issues in designing or choosing a piece of numerical software are
ease of use, reliability, and speed. Most of the algorithms covered in this book
have already been carefully programmed with these three issues in mind. If
some of this existing software can solve your problem, its ease of use may well
outweigh any other considerations such as speed. Indeed, if you need only to
solve your problem once or a few times, it is often easier to use general purpose
software written by experts than to write your own more specialized program.

There are three programming paradigms for exploiting other experts’ soft-
ware. The first paradigm is the traditional software library, consisting of a
collection of subroutines for solving a fixed set of problems, such as solving
linear systems, finding eigenvalues, and so on. In particular, we will discuss
the LAPACK library [10], a state-of-the-art collection of routines available in
Fortran and C. This library, and many others like it, are freely available in
the public domain; see NETLIB on the World Wide Web.?2 LAPACK provides
reliability and high speed (for example, making careful use of matrix multipli-
cation, as described above) but requires careful attention to data structures
and calling sequences on the part of the user. We will provide pointers to such
software throughout the text.

The second programming paradigm provides a much easier-to-use environ-
ment than libraries like LAPACK, but at the cost of some performance. This
paradigm is provided by the commercial system Matlab [184], among others.
Matlab provides a simple interactive programming environment where all vari-
ables represent matrices (scalars are just 1-by-1 matrices), and most linear al-
gebra operations are available as built-in functions. For example, “C = Ax B”
stores the product of matrices A and B in C, and “A = inv(B)” stores the
inverse of matrix B in A. It is easy to quickly prototype algorithms in Matlab
and to see how they work. But since Matlab makes a number of algorith-

?Recall that we abbreviate the URL prefix http://www.netlib.org to NETLIB in the text.



