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Preface

The intent of this book is to introduce the reader to the beautiful world of
Combinatorial Algebraic Topology. While the main purpose is to describe the
modern research tools and latest applications of this field, an attempt has
been made to keep the presentation as self-contained as possible.

A book to teach from

The text is divided into three major parts, which provide several options for
adoption for course purposes, depending on the time available to the instruc-
tor.

The first part furnishes a brisk walk through some of the basic concepts of
algebraic topology. While it is in no way meant to replace a standard course
in that field, it could prove helpful at the beginning of the lectures, in case the
audience does not have much prior knowledge of algebraic topology or would
like to focus on refreshing those notions that will be needed in subsequent
chapters. The first part can be read by itself, or used as a blueprint with
a standard textbook in algebraic topology such as [Mun84] or [Hat02] as
additional reading. Alternatively, it could also be used for an independent
course or for a student seminar.

If the audience is sufficiently familiar with algebraic topology, then one
could start directly with the second part. This is suitable for a graduate or
advanced undergraduate course whose purposc would be to learn contempo-
rary tools of Combinatorial Algebraic Topology and to see them in use on
some examples. At the end of the course, a successful student should be able
to conduct independent research on this topic.

The third and last part of the book is a foray into one specific realm
of a present-day application: the topology of complexes of graph homomor-
phisms. It fits well at the end of the envisioned graduate course, and is meant
as a source of illustrations of various techniques developed in the second part.
Another possibility would be to use it as material for a reading seminar.
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What 1s different in our presentation

In the second part we lay the foundations of Combinatorial Algebraic
Topology. In particular, we survey many of the tools that have been used
in research in topological combinatorics over the last 20 years. However, our
approach is at times quite different from the one prevailing in some of the
literature.

Perhaps the major novelty is the general shift of focus from the category
of posets to the category of acyclic categories. Correspondingly, the entire
Chapter 10 is devoted to the development of the fundamental theory of acyclic
categories and of the topology of their nerves, which in turn are no longer
abstract simplicial complexes, but rather regular triangulated spaces.

Also, Chapter 11 is designed to give quite a different take on discrete
Morse theory. The theory is broken into three major branches: combinatorial,
topological, and algebraic; each one with its own specifics. A very new feature
here is the recasting of discrete Morse theory for posets in terms of poset
maps with small fibers. This, together with the existence of a universal object
associated to every acyclic matching and the Patchwork Theorem allows for
a structural understanding of the techniques that have been used until now.

There are further novelties scattered in the remaining four chapters of
the second part. In Chapter 13 we connect the notion of evasiveness with
monotone poset maps, and introduce the notion of NE-reduction. After that,
the importance of colimits in Combinatorial Algebraic Topology is empha-
sized. We look at regular colimits and their relation with group actions in
Chapter 14, and at homotopy colimits in Chapter 15. We provide complete
proofs for all the statements in Chapter 15, based on the previous groundwork
pertaining to cofibrations in Chapter 7. Finally, in Chapter 16, we take a dar-
ing step of counting the machinery of spectral sequences to the core methods
of Combinatorial Algebraic Topology.

Let us also comment briefly on our citation policy. As far as possible we
have tried to avoid citations directly in the text, choosing to present material
in the way that appeared to us to be most coherent from the contemporary
point of view. Instead, each chapter in the second and third parts ends with
a detailed bibliographic account of the contents of that chapter. Since the
mathematics of the first part is much more classical, we skip bibliographic
information there almost completely, giving only general references to the
existing textbooks. An exception is provided by Chapter 8, where the material
is slightly less standard, thus justifying making some reading suggestions.
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