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Preface

The classical theory of Fourier series and integrals, as well as Laplace trans-
forms, is of great importance for physical and technical applications, and
its mathematical beauty makes it an interesting study for pure mathemati-
cians as well. I have taught courses on these subjects for decades to civil
engineering students, and also mathematics majors, and the present volume
can be regarded as my collected experiences from this work.

There is, of course, an unsurpassable book on Fourier analysis, the trea-
tise by Katznelson from 1970. That book is, however, aimed at mathemat-
ically very mature students and can hardly be used in engineering courses.
On the other end of the scale, there are a number of more-or-less cookbook-
styled books, where the emphasis is almost entirely on applications. I have
felt the need for an alternative in between these extremes: a text for the
ambitious and interested student, who on the other hand does not aspire to
become an expert in the field. There do exist a few texts that fulfill these
requirements (see the literature list at the end of the book), but they do
not include all the topics I like to cover in my courses, such as Laplace
transforms and the simplest facts about distributions.

The reader is assumed to have studied real calculus and linear algebra
and to be familiar with complex numbers and uniform convergence. On
the other hand, we do not require the Lebesgue integral. Of course, this
somewhat restricts the scope of some of the results proved in the text, but
the reader who does master Lebesgue integrals can probably extrapolate
the theorems. Our ambition has been to prove as much as possible within
these restrictions.
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Some knowledge of the simplest distributions, such as point masses and
dipoles, is essential for applications. I have chosen to approach this mat-
ter in two separate ways: first, in an intuitive way that may be sufficient
for engineering students, in star-marked sections of Chapter 2 and sub-
sequent chapters; secondly, in a more strict way, in Chapter 8, where at
least the fundaments are given in a mathematically correct way. Only the
one-dimensional case is treated. This is not intended to be more than the
merest introduction, to whet the reader’s appetite.

Acknowledgements. In my work I have, of course, been inspired by exist-
ing literature. In particular, I want to mention a book by Arne Broman,
Introduction to Partial Differential Equations... (Addison—Wesley, 1970), a
compendium by Jan Petersson of the Chalmers Institute of Technology in
Gothenburg, and also a compendium from the Royal Institute of Technol-
ogy in Stockholm, by Jockum Aniansson, Michael Benedicks, and Karim
Daho. I am grateful to my colleagues and friends in Uppsala. First of all
Professor Yngve Domar, who has been my teacher and mentor, and who
introduced me to the field. The book is dedicated to him. I am also partic-
ularly indebted to Gunnar Berg, Christer O. Kiselman, Anders Kallstrém,
Lars-Ake Lindahl, and Lennart Salling. Bengt Carlsson has helped with
ideas for the applications to control theory. The problems have been worked
and re-worked by Jonas Bjermo and Daniel Domert. If any incorrect an-
swers still remain, the blame is mine.

Finally, special thanks go to three former students at Uppsala University,
Mikael Nilsson, Matthias Palmér, and Magnus Sandberg. They used an
early version of the text and presented me with very constructive criticism.
This actually prompted me to pursue my work on the text, and to translate
it into English.

Uppsala, Sweden Anders Vretblad
January 2003
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1

Introduction

1.1 The classical partial differential equations

In this introductory chapter, we give a brief survey of three main types of
partial differential equations that occur in classical physics. We begin by
establishing some convenient notation.

Let © be a domain (an open and connected set) in three-dimensional
space R®, and let T be an open interval on the time axis. By C*¥(), resp.
C*(Q x T), we mean the set of all real-valued functions u(z,y, z), resp.
u(z,y, z,t), with all their partial derivatives of order up to and including
k defined and continuous in the respective regions. It is often practical to
collect the three spatial coordinates (x,y,2) in a vector x and describe the
functions as u(x), resp. u(x,t). By A we mean the LAPLACE operator

32 32 32
T2 .- = P —_
A=Vii= 8x2+3y2+622'

Partial derivatives will mostly be indicated by subscripts, e.g.,

@ _ d%u
T brzoy

The first equation to be considered is called the heat equation or the
diffusion equation:
1 Ou

Auzzia, (x,2) e xT.
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As the name indicates, this equation describes conduction of heat in a
homogeneous medium. The temperature at the point x at time ¢ is given
by u(x,t), and a is & constant that depends on the conducting properties
of the medium. The equation can also be used to describe various processes
of diffusion, e.g., the diffusion of a dissolved substance in the solvent liquid,
neutrons in a nuclear reactor, BROWNian motion, etc.

The equation represents a category of second-order partial differential
equations that is traditionally categorized as parabolic. Characteristically,
these equations describe non-reversible processes, and their solutions are
highly regular functions (of class C).

In this book, we shall solve some special problems for the heat equa-
tion. We shall be dealing with situations where the spatial variable can be
regarded as one-dimensional: heat conduction in a homogeneous rod, com-
pletely isolated from the exterior (except possibly at the ends of the rod).
In this case, the equation reduces to

1

Ugr = —5 Ut -
a2

The wave equation has the form

1 &u
T2 o2

where c is a constant. This equation describes vibrations in a homogeneous
medium. The value u(x,t) is interpreted as the deviation at time ¢ from
the position at rest of the point with rest position given by x.

The equation is a case of hyperbolic equations. Equations of this category
typically describe reversible processes (the past can be deduced from the
present and future by “reversion of time”). Sometimes it is even suitable
to allow solutions for which the partial derivatives involved in the equation
do not exist in the usual sense. (Think of shock waves such as the sonic
bangs that occur when an aeroplane goes supersonic.) We shall be studying
the one-dimensional wave equation later on in the book. This case can, for
instance, describe the motion of a vibrating string.

Au (x,t) €2 xT.

Finally we consider an equation that does not involve time. It is called
the Laplace equation and it looks simply like this:

Au=0.

It occurs in a number of physical situations: as a special case of the heat
equation, when one considers a stationary situation, a steady state, that
does not depend on time (so that u; = 0); as an equation satisfied by the
potential of a conservative force; and as an object of considerable purely
mathematical interest. Together with the closely related POISSON equa-
tion, Au(x) = F(x), where F is a known function, it is typical of equations
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classified as elliptic. The solutions of the Laplace equation are very regular
functions: not only do they have derivatives of all orders, there are even cer-
tain possibilities to reconstruct the whole function from its local behaviour
near a single point. (If the reader is familiar with analytic functions, this
should come as no news in the two-dimensional case: then the solutions
are harmonic functions that can be interpreted (locally) as real parts of
analytic functions.)

The names elliptic, parabolic, and hyperbolic are due to superficial sim-
ilarities in the appearance of the differential equations and the equations
of conics in the plane. The precise definitions of the different types are as
follows: The unknown function is u = u(X) = u(z1,z3,...,Zm). The equa-
tions considered are linear; i.e., they can be written as a sum of terms equal
to a known function (which can be identically zero), where each term in
the sum consists of a coefficient (constant or variable) times some deriva-
tive of u, or u itself. The derivatives are of degree at most 2. By changing
variables (possibly locally around each point in the domain), one can then
write the equation so that no mixed derivatives occur (this is analogous to
the diagonalization of quadratic forms). It then reduces to the form

ajug +agug + - + GmUmm + {terms containing u; and u} = f(x),

where u; = 0u/0z; etc. If all the a; have the same sign, the equation is
elliptic; if at least one of them is zero, the equation is parabolic; and if
there exist a;’s of opposite signs, it is hyperbolic.

An equation can belong to different categories in different parts of the
domain, as, for example, the TRICOMI equation uz; + Zu,y = 0 (where
u = u(z,y)), which is elliptic in the right-hand half-plane and hyperbolic
in the left-hand half-plane. Another example occurs in the study of the
so-called velocity potential u(xz, y) for planar laminary fluid low. Consider,
for instance, an aeroplane wing in a streaming medium. In the case of ideal
flow one has Au = 0. Otherwise, when there is friction (air resistance), the
equation Jooks something like (1—M?2)u,, +u,y = 0, with M = v/vp, where
v is the speed of the flowing medium and v, is the velocity of sound in the
medium. This equation is elliptic, with nice solutions, as long as v < vy,
while it is hyperbolic if v > v and then has solutions that represent shock
waves (sonic bangs). Something quite complicated happens when the speed
of sound is surpassed.

1.2 Well-posed problems

A problem for a differential equation consists of the equation together with
some further conditions such as initial or boundary conditions of some form.
In order that a problem be “nice” to handle it is often desirable that it have
certain properties:
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1. There ezists a solution to the problem.

2. There exists only one solution (i.e., the solution is uniquely deter-
mined).

3. The solution is stable, i.e., small changes in the given data give rise
to small changes in the appearance of the solution.

A problem having these properties (the third condition must be made
precise in some way or other) is traditionally said to be well posed. It is,
however, far from true that all physically relevant problems are well posed.
The third condition, in particular, has caught the attention of mathemati-
cians in recent years, since it has become apparent that it is often very
hard to satisfy it. The study of these matters is part of what is popularly
labeled chaos research.

To satisfy the reader’s curiosity, we shall give some examples to illuminate
the concept of well-posedness.

Example 1.1. It can be shown that for suitably chosen functions f € C*°,
the equation u; + uy + (z + 2iy)u, = f has no solution u = u(z,y,t) at
all (in the class of complex-valued functions) (Hans Lewy, 1957). Thus, in
this case, condition 1 fails. 0

Example 1.2. A natural problem for the heat equation (in one spatial
dimension) is this one:

Uzz(Z,t) = up(2,t), 2> 0, £ > 0; u(z,0)=0,z>0; u(0,t)=0,¢t>0

This is a mathematical model for the temperature in a semi-infinite rod,
represented by the positive z-axis, in the situation when at time 0 the rod
is at temperature 0, and the end point = = 0 is kept at temperature 0 the
whole time ¢ > 0. The obvious and intuitive solution is, of course, that the
rod will remain at temperature 0, i.e., u(z,t) =0 for all z > 0, ¢ > 0. But
the mathematical problem has additional solutions: let

T

T -2t/(4t)
t3/26 , >0, t>0.

u(z,t) =
It is a simple exercise in partial differentiation to show that this function
satisfies the heat equation; it is obvious that u(0,t) = 0, and it is an
easy exercise in limits to check that 31\1‘1(1) u(z,t) = 0. The function must be

considered a solution of the problem, as the formulation stands. Thus, the
problem fails to have property 2.

The disturbing solution has a rather peculiar feature: it could be said to
represent a certain (finite) amount of heat, located at the end point of the
rod at time 0. The value of u(v/2t,t) is 1/(2/e)/t, which tends to +oc as
¢ \, 0. One way of excluding it as a solution is adding some condition to
the formulation of the problem; as an example it is actually sufficient to
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demand that a solution must be bounded. (We do not prove here that this
does solve the dilemma.) 0

Example 1.3. A simple example of instability is exhibited by an ordinary
differential equation such as y”(t) + y(t) = f(t) with initial conditions
y(0) = 1, ¥/(0) = 0. If, for example, we take f(t) = 1, the solution is y(t) =
1. If we introduce a small perturbation in the right-hand member by taking
f{t) = 1+ ecost, where £ # 0, the solution is given by y(t) = 1+ % etsint.
As time goes by, this expression will oscillate with increasing amplitude
and “explode”. The phenomenon is called resonance. D

1.3 The one-dimensional wave equation

We shall attempt to find all solutions of class C? of the one-dimensional
wave equation
¢ ugg = uy.

Initially, we consider solutions defined in the open half-plane ¢ > 0.
Introduce new coordinates (¢, 7), defined by
E=zxz—-ct, n=z+ct.
It is an easy exercise in applying the chain rule to show that
" B B2u+2 &u +3"u
T 9z 9T Totdn  On?
Pu_ ,(Pu_, Fu
a2~ \og2 " otdn o’
Inserting these expressions in the equation and simplifying we obtain

& u 0 (0u
2 . frd — B -
¢4 0§ on 0 = ¢ (67)) 0

Now we can integrate step by step. First we see that du/0n must be a
function of only 7, say, Ou/0n = h(n). If ¥ is an antiderivative of h, another
integration yields u = @(£) + ¥(n), where ¢ is a new arbitrary function.
Returning to the original variables (z,t), we have found that

Ut =

u(z,t) = p(z — ct) + P(z + ct). (1.1

In this expression, ¢ and i are more-or-less arbitrary functions of one
variable. If the solution u really is supposed to be of class C?, we must
demand that ¢ and v have continuous second derivatives.

It is illuminating to take a closer look at the significance of the two terms
in the solution. First, assume that 1(s) = 0 for all s, so that u(z,t) =
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u(z,1)

—c—|
/ u(z,0)

FIGURE 1.1.

At

r — ct =cons

FIGURE 1.2.

w(z — ct). For t = 0, the graph of the function = — u(z,0) looks just like
the graph of ¢ itself. At a later moment, the graph of z — u(z,t) will
have the same shape as that of ¢, but it is pushed ct units of length to the
right. Thus, the term @(x — ct) represents a wave moving to the right along
the x-azxis with constant speed equal to c. See Figure 1.1! In an analogous
manner, the term ¥(z + ct) describes a wave moving to the left with the
same speed. The general solution of the one-dimensional wave equation
thus consists of a superposition of two waves, moving along the z-axis in
opposite directions.

The lines z + ¢t = constant, passing through the half-plane ¢ > 0, consti-
tute a net of level curves for the two terms in the solution. These lines are
called the characteristic curves or simply characteristics of the equation.
If, instead of the half-plane, we study solutions in some other region D, the
derivation of the general solution works in the same way as above, as long
as the characteristics run unbroken through D. In a region such as that
shown in Figure 1.2, the function ¢ need not take on the same value on the
two indicated sections that do lie on the same line but are not connected
inside D. In such a case, the general solution must be described in a more
complicated way. But if the region is convez, the formula (1.1) gives the
general solution.
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Remark. In a way, the general behavior of the solution is similar also in higher
spatial dimensions. For example, the two-dimensional wave equation

v 8%u 1 A*u

522 TP & o

has solutions that represent wave-shapes passing the plane in all directions, and
the general solution can be seen as a sort of superposition of such solutions. But
here the directions are infinite in number, and there are both planar and circular
wave-fronts to consider. The superposition cannot be realized as a sum — one
has to use integrals. It is, however, usually of little interest to exhibit the general
solution of the equation. It is much more valuable to be able to pick out some
particular solution that is of importance for a concrete situation. O

Let us now solve a natural initial value problem for the wave equation
in one spatial dimension. Let f(z) and g(z) be given functions on R. We
want to find all functions u(z,t) that satisfy

(P) CUgy = Ugt , - < <00, t>0
U(I,O) = f(I), 'U.g(fl?,O) = g(l'), -0 < T <X
(The initial conditions assert that we know the shape of the solution at
t = 0, and also its rate of change at the same time.) By our previous

calculations, we know that the solution must have the form (1.1}, and so
our task is to determine the functions yp and ¥ so that

f(z) = w(z,0) = p(z)+¥(z), 9(z) = u(z,0) = —c'(z)+c¥'(z). (1.2)

An antiderivative of g is given by G(x) = foz g(y) dy, and the second formula
can then be integrated to
1
—p(z) +¥(z) = - G(z) + K,

[

where K is the integration constant. Combining this with the first formula
of (1.2), we can solve for ¢ and y:

o@=3(10- 16 -K). 9@ = 5(f0)+ 166 + k)
Substitution now gives
u(z,t) = plz — ct) + Yz + ct)

:l<f(z—ct)—%G(z—ct)—-K—+—f(x+ct)+%G(z+ct)+K>

2
_ f(z—ct)+ f(z +ct) . G(z + ct) — G(z — ct)
B 2 2¢
T+ct
= f(I_Ct);f(HCt) +% / 9(y) dy. (1.3)

x—ct



