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Preface

The purpose of this book is two-fold. Firstly, it gives some basics of complex
function theory and special functions and secondly, it assembles most important
results in my own research made in the last several years under the guidance of
Professor S. Kanemitsu, known as Jin Guangzi in China. The author would like to
thank Mr. Y. -L. Lu for helping with typesetting.

Thus a beginner reader can use this book as a quick introduction to complex
analysis and special functions, and an advanced reader can use it as a source book
of many research problems. E.g. in the study of the Euler integral which appeared
in a generalization of Jensen’s formula, there are possible new results obtained,
likewise the study of Catalan’s constant and Kummer’s Fourier series would be a
rich arsenal for future studies.

Also, many of the results are presented so that the reader can get used to the
use of the zeta-symmetry, the ultimate power in analytic number theory, in the
same spirit as Vinogradov’s book Elements of Number Theory which makes the
reader be familiar with exponential sums, leading the reader to the rich world of
modular relations.

A somewhat new device is to consider a part of the series of the integrals as the
case may be, which speaks out for the whole, i.e. in Chapter 2, the partial sum
L,(z,a) for the Hurwitz zeta-function plays a fundamental role and so does the
partial integral I,.(z) in Section 3.5.

Here is a rough description of the contents.

Chapter 1 gives a quick introduction to complex analysis to such an extent that
is needed to go through this book and can be skipped by an advanced reader.

Chapter 2 assembles those results which T obtained in the paper [LT] and some
material for X. -H. Wang’s Master’s thesis, elaborating some results in the book of
Srivastava and Choi [SC].

Chapter 3 incorporates those results in the paper [DLS] and my Ph.D thesis
[Li], connected with arithmetic properties of Laurent coefficients of important zeta-
functions including the power of the Riemann zeta-function.
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Chapter 4 incorporates the results connected with Mikol4s’ integral representa-
tions for the Hurwitz and the product of Hurwitz zeta-functions, and is based on
the paper [LHK1].

Chapter 5 has the title “zeta-value relations”, meaning the linear relations be-
tween values of a class of zeta-functions at rational arguments. In the first half,
we present the method of Yamamoto of finite Fourier series and obtain the gener-
alization of the Eisenstein’s formula, based on [LHK2]. In the last half, we make
full use of the intrinsic properties of the Lipcshitz-Lerch zeta-functions, showing
an easier and clearer approach to such problems through special functions, based
on [CKL].

Chapter 6 assembles two important summation formulas, i.e. that of Poisson
and of Plana after proving the Poisson summation formula for C'-functions, we
establish the theta transformation formula, which is then applied to derive the
functional equation for the Riemann zeta-function following one of two methods of
Riemann, based on the book of Rademacher. In the second-half, we establish the
Plana summation formula by proving at the same time the integral representation
for the Lipschitz-Lerch zeta-function, based on [LY].

Finally, in Chapter 7 we collect some results on the modular relation: One is a
new derivation of the Fourier series for the periodic Bernoulli polynomial ([LMZ])
and the other is a vast generalization of Katsurada’s results (([LKT]) which are in
themselves vast generalizations of previous results.

Hailong Li
2011.2.26
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Chapter 1

A quick introduction to complex analysis

In this chapter I will assemble some basic facts from complex analysis to such
an extent that will be needed to follow the argument that follows. I will state the
results in the simplest possible way so that even a beginner can go through the
flow of the thoughts and argument.

1.1 Introduction

In this book I am going to present what I have obtained in the last several years
in the intcrmediate field of number theory and special functions.

However, to have a better grasp of the results, it is indispensable to have a good
command of complex function theory. Therefore, I will assemble some of the most
basic facts of the theory as a quick introduction in this chapter, which I hope will
serve as teaching material for a short course on function theory.

Naturally complex function theory consists of two main streams, Weierstrass
theory of power series and their analytic continuation and Cauchy’s theory
of complex integration.

First I will state rudiments of the theory of power series which are very useful
in extending the real theory into complex theory. 1 will state manifestations of
the Cauchy integral theorem, the Cauchy integral formula, which may be
regarded as a consequence of the Cauchy residue theorem, and then I will follow
Ahlfors [Ahl] to present a generalization of the Gauss mean value theorem, in
which use is made of the Euler integral (1.3.5).

The most essential results in my research depend on the use of the functional
equation for the relevant zeta-functions, i.e. the zeta symmetry, and so I will
try to introduce this rich realm of symmetries and the world of modular relation
supremacy gradually to the recaders (cf. [KT2]). I will state another consequence
of the Cauchy residue theorem, the partial fraction expansion for the cotangent
function, since this is known as part of function theory. I will eventually show that
it is a manifestation of the functional equation. This partial fraction expansion
has turned out to be very useful, e.g. in deducing an integral representation for
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Kinkelin’s formula (2.5.33) in Section 1.5. For many other important results, cf.
[KT1}, [CKT].

1.2 A quick introduction to complex analysis

1.2.1 Complex number system

This section is quite elementary and an advanced reader can skip this chapter
and go on to the next chapter. I begin with an introduction of complex numbers
since there is still a confusion existing regarding the meaning of these imaginary
numbers which sound non-existing. But they do exist as plane vectors as we shall

see.

We know that two dimensional vectors (plane vectors) z = < 5 ) € R? form

a vector space under the addition (translation)

! /
z-i-z':(;__::; ), z':(z/>

and the scalar multiplication (¢ € R)

(%)
cz = .
cy

There are multiplications defined.
Scalar product:
z-Z =z’ +yy eR.

Vector product:

z z

y yl :a:y’—z'yER,

zxz':‘

where the middle term indicates the determinant.

We introduce the vector z = ( _a:y ), which is a reflection of z with respect

to the z-axis, and combine these two multiplications in the following #-operation

= / 7 s
[ z-z ozl —yy 2
z*z _<szz'>~(my’+m’y>€R'

E.g. if we label ( (1) ) by 14, then we have

e (1) (1) (3), 7

due to Gauss:
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In view of
2=( %) 1 n 0y + i
=\, )= z{ g yl | ) =zer+ui,
1
where e; = < 0 ), we think of the vector z as a “number”, a complex number,
z=z+1iy:

R292:<;’)<——>z=$+iy€© (1.2.1)

Since we just denote the basis vector eg = ( ) as i, the above correspondence

1

is 1:1 and moreover, it turns out that the star product is the same as ordinary
multiplication of numbers with i replaced by —1:

’

22 =z =(z+iy)(@’ +1y) =22’ —yy' +i(zy +2'y) —— zx 2"

We can easily prove that the system (R?,+,x) forms a field, which we denote by
C = (C,+,") and refer to it as the field of complex numbers.
We recall the length (norm, absolute value) of a vector

= VPP

(the Pythagorean theorem).
By (1.2.1) we introduce the absolute value of the complex number z = z + iy

by
2| = |z +iy| = |z| = V&2 + 2.
Don’t do this: |1+ 3i| = /1 + (3i)2 = /-8.
We may of course define the distance between two numbers z, 2’ by
d(z,2) = |z~ 2| = /(z — &) + (y —y')%

Then (C,d) is a metric space which is complete because R? is so. These are

simplest examples of the Hilbert spaces. Hence we may develop analysis on it,
complex analysis.

1.2.2 Cauchy-Riemann equation and inverse functions

Theorem 1.1 A function w = f(z) = u + iv is analytic on the domain D C

C & u, v are totally differentiable on D C R? and satisfy the Cauchy-Riemann
du v du v of

equation B = BZ, a—y = 3. In this case we have f'(2) = 9g = Us + iv,

(Also, substituting the Cauchy-Riemann equation in this formula, we may express

it as ' (z) = %1];) = % (uy +1ivy) = vy — iuy).
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Proof (=) The diflerentiability of f at a point zp means
f(z) = f(20) = f' (20) (z — 20) + 0 (jz — 20]) . (1.2.2)

Substituting the value o = f/ (29) = P +iQ and comparing the real and imag-
inary parts, we obtain

w(z,y) ~ u (zo,y0) = P (z — z0) — Q (¥ — wo) + o (|2 — z0l)

= (-0 (372) ol ~z)
and
v(2,y) ~— v (2o, y0) = Q (2 — m0) + P (y — yo) + 0 (]z — 20)
~(Q, P) (2 - Z‘J’) Yo(lz - 2f).
Hence,

u(z) —u(zo) = (P, —Q) (2 — z0) +o(|z = 20)),
v(z) — v (20) = (@, P) (z — 20) + 0(|z — 2o) ,

z z .
where z = ( ), zy = ( o ) are the real vectors corresponding to z =

Y Yo
z + iy, 2o = o + iyg. This means that v, v are both totally differentiable at zq
and P = Uy, @ = —uy; & = vz, P = vy, holds. Hence, in particular, it follows
that uy, = P = vy, uy = —& = —v,; whence the Cauchy-Riemann equation.

(<) We may trace back the above proof in the reverse direction. With

hy

)—>0 (& h:=hy +ihy — 0),
ha

P=us=vy, @Q=—uy=us h’:(

we have
u(z + hi,y + he) — u(z,y) = (uz,uy) b +o(lhl) = Phy — Qha +o(lh]),
v(z 4+ hy,y + he) — v (2,y) = (vz,vy) R+ o (lh]) = Qh1 + Pha +o(|h]),
so that

f(Z*f—h)*‘f(Z):f($+h1,y+h2)—f($,y)
= Phy — Qhg + i (Qh1 + Phs) -+ o(|h|)
= (P +1iQ) (h1 + ihg) + o (|h]).

Hence it follows that f is differentiable and f/(2) = ug + iv,. O
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Remark 1.1 (i) To remember the Cauchy-Riemann equation, notice the alpha-
betical order of letters in the variables w = u +iv, z = x + iy and remember first
Uy = Uy, Which is in alphabetical order and then changing the order to replace the

real and imaginary parts, then we have a sign change to get uy = —v,. Also f'(z)
is first to think of f(z) as a formal sum u+1iv of two real functions and to partially
of

differentiate it with respect to x : to find e
x
(ii) The total differentiability in Theorem 1.1 is assured by the coninutity of
du ou
dz’ oy’

sume that u, v are of C?-class, then we may appeal to Theorem 1.1.

which is then assured roughly by their differentiability. Thus, if as-

Corollary 1.1 (The inverse function theorem for complex variables) If a
function w = f(z) is analytic in a domain D and f' (z0) # 0 at 20 € D, then the

inverse function g(w) = f~(w) ezists in the neighborhood of wo = f(20) and is
analytic at wg, with the derivative given by

W)= e
TW=FE dw  dz

Proof When we view the complex function w + iv = w = f(z) as the vector-
valued function w = (Z), u=u(z), v =uov(z), z = <2), then the Jacobian

_8(u,v . ; 2,
Jw = 5z.2) is [f'(2)|":

~—

J(z,y) = Juw(z) = | (2)". (1.2.3)

Now we may appeal to the inverse function theorem below for several variable
real functions completing the proof.

Inverse function theorem If a vector-valued function w is differentiable at
a point zo and Jw(zg) # 0 in the neighborhood, then there exits a local inverse
function of w and is locally C'. O

Example 1.1  The (complez) logarithm function logw is o multi-valued func-
tion given as the inverse function of the exponential function w = e® :

logw = z = z + iy = log |w| + iarctan v log |w| +iargw (1.2.4)
u

1
and for any branch, we have (logw)’ = —, w # 0. We note that the multi-
w

valuedness of the arctan function gwes rise to that of the logarithm function.
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Indeed, the Jacobian is J(z,y) = }e"‘lg = e*® £ 0 for z # 0, so that the inverse
function exists. To prove (1.2.4), we write (cf. (1.2.18) below)

u+iv =w = e* = e%elY.
Then we have

& z=logw

u = eF cosy,
v =-e%siny

v
or |w| = e* and tany = —, whence
o
0]
z =log|lw| and y = arctan-—.
u

v, .
Since arctan " is nothing but argw, we conclude (1.2.4).

In what follows, we choose the principal branch log z of the logarithm once
and for all, where the principal branch means that the argument lies between —mn
and gt

logz = log|z| +iargz, —m <argz < m.

For the complex variable s = ¢ + it and n € N, we define the power function
n—°% by

—8&

n~* = e *°8" — n"7(costlogn — isintlogn), (1.2.5)
with log n designating the real number.

1.2.3 A rough description of complex analysis

The most fundamental ingredients in complex functions theory are differenti-
ation and integration, the former of which is defined in the same way as with real
functions, while integration is more complicated.

We say that a complex function is analytic (or sometimes holomorphic or
regular) in a domain if it is differentiable at each point of the domain, where
differentiability means the existence of the derivative as given by (1.2.2) above,
and a domain (sometimes referred to as a region) mathematically means a con-
nected set, we simply understand a domain to be a certain plane figure (C C) with
interior and with the boundary curve. We usually assume that domains are arc-
wise connected. Typical domains are the rectangles (parallelopipeds) and circles
and there is no need to worry about what domains are.

We assume throughout that a curve is a piecewise smooth (Jordan) curve
described by the parametric expression

z=z(t)=z(t) +iy(t), tE€ la,b] (1.2.6)
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E.g., the unit circle C: |z| =1 is given by
z=z(t) =¥ te0,1] (1.2.7)

or by
C:z=2z2(t)=¢€" tel0,2n]

By the Jordan curve theorem, such a curve encircles a domain D. In this context,
we denote the curve by 8D and refer to it as its boundary.

Note that this is a positively-oriental curve to the effect that if you traverse
the curve, you’ll see the inside on your left. We assume all the curves are positively
oriented. The expression (1.2.6) for the unit circle is in counter-clockwise direction.
The same curve oriented in the opposite direction, denoted —C, is given by

—C:z=2(t) =*7Y 1 e0,1].

The notion of analytic functions is indispensably connected with their domains,
and we say that a function is analytic at a point or on a curve if it is analytic
in a domain containing the point or the curve.

There are two main streams of ideas in complex analysis. One is due to Weier-
strass and appeals to the power series expansion. The other is due to Cauchy and
describes the analyticity in terms of contour integrals. Complex integrals are all
line (or contour) integrals and are slightly different from the ordinary Riemann

b
integrals / f(z)dz. However we may think of it as performing the change of

variable dz = 2/(t) dt :

/f(z dz—/ f(z(2)2'(t) dt, (1.2.8)

if the curve C is given by (1.2.6). We note that

[ s@as=- [ jea

Weierstrass’s main theorem says that a function f(2) is analytic in a domain
D if and only if it is expanded into a power series (Taylor series) at each point
20 of D:

F2) =" an(z—2)" (1.2.9)
n=0

If f is analytic, then it has derivatives of all orders and (1.2.9) holds, which is very
distinct from real analytic functions.

This implies the consistency (or unicity) theorem to the effect that if two
functions are analytic in a domain D and they coincide on a subset S of D having



8 Chapter 1 A quick introduction to complex analysis

an accumulation point in D, then they must coincide on the whole D. The consis-
tency theorem is a basis for the principle of analytic continuation to the effect
that if analytic functions f(z) and g(z) coincide e.g. on a segment of the real axis,
then one is an analytic continuation of the other. cf. the passages after Remark
1.2.

The Cauchy integral theorem says that a function f(z) is analytic in a
domain D if and only if for any curve C within D, we have

/ f(z)dz =0. (1.2.10)
c
Example 1.2 The circle with center at « and radius r, |z — o] = r, can be
erpressed as

C: z=a+re*™ ¢c0,1]. (1.2.11)

Evaluate the integral

I:/ L dz.
CZ—‘Q

1
L 2mitig s\ s — o
I :/ e T (2n1) dt = 2.

Substituting (1.2.11), we get

1
How about I, = / ————dz, n = 27 Similarly, we have

c(z—a)yn 7
1 2mit 21i 1 )
In=/ L omidt= ﬂ/ 2Rt df — 0,
0 (T‘C mt)n Tn—l 0

By the Cauchy integral theorem,

/(z-a)"dz:O, n
c

\Y
o

Hence we have evaluated the integral
0 n# -1
/ (z—a)"dz=¢ " 7L (1.2.12)
C 2ni, n=—1,
where C is a circle enclosing the point z = a.

If f(z) is analytic in a domain D except for a point z = a € D, then we may
reduce the integral along a curve C containing « to a circle ¢ containing a.

For we connect ¢ and C by two lines Ly and L9 oriented in opposite way. The
curve C; = —cU L; U Ly encircles a domain, where f(z) is analytic, so that

0= [ seaz= [ s@es [ st [ s [ s
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/Cf(z)dz:/Cf(z)dz.

Thus we find that complex analysis is very geometric (topological).

which gives

Example 1.3 Consider the function f(z) = which has simple poles at

2241

2z = +i. A simple pole means that we have a denominator z —i and z+1 (for more
details, see below). Let

1 .
Ci:z—i= §e2’“t, t € [o,1].

. 1 1
Lif(z)dz:21[j (z—i+ z—l—i) dz,

where we applied the “partial fraction expansion”. The first integral is already in
(1.2.12) and is —4mn, while for the second, if we substitute the parametric expression,
then we are to face the integral

1 eZnit
2mi -/0 m dt,

Then

1 . .
0s 2t — 2nt + 4
which is 2mi + 8m? / co8 (sin 27t + 4)i dt, and we don’t want to go on.

o 8sin2mt + 17
We should apply (1.2.10) to conclude that it is 0. Hence

1
/ z2+1dz:n.
Ci

1
Similarly, if C_; is the circle with center at z = —i and with radius -, then

2
1
/ 2—_+_—1- dz = -7,
C_; z

while for any circle C with center at the origin and radius 0 < r <1,

1

Remark 1.2 Here we notice a big difference between the real analytic function

;5%. Indeed, f(x) is a

flz) = —51— and the complex analytic function f(z) =
e +1
very obedient function, and you may pay no attention to the fact that although it
has the Maclaurin expansion
1 = n,.2n
f(ﬂ?)zl_—(_mT)ZZ(—l) ",

n=0
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it is absolutely convergent only in |x| < 1. Why is there such a restriction? It is
because of the singularities at z = % i which prevent the complex power series being
convergent oulside of |z| < 1.

Weierstrass’s main theorem implies that if a function is analytic in a domain D
containing a point a, then it can be expanded into a Taylor series around o in the
mazimum disc that is contained in D, and moreover, the real analytic series for
f(z) can be uniquely continued analytically to f(z). Therefore inside the domain of
analyticity, we may simply write z for z and get an analytic function which involves
the real analytic function as a special case

1

Er_1Hf(z):L 12| < 1.

224+ 1

flz) =
1.2.4 Power series

A power series is like a polynomial of infinite degree as given by Remark 1.2

oo
E anz”,
n=0

and is of the form

an being called the n-th coefficient. They are uniquely determined, i.e. if Z On 2"

n=0
00

= Z bn2" in some region, then a, = b,. Recall that the geometric series

n=0

fa)=3 2"
n=0

is absolutely and uniformly convergent in |z| < 1, divergent in |z| > 1 and on the
circle |z] = 1 it is (conditionally) convergent except for z = 1. The last because
on the unit circle, we have z = e?™® z € R, so that the common ratio is 1 if and
only if z € Z. It turns out that the region of convergence of power series is always
a circle (finite or infinite) and the threshold circle as above is called the circle of
convergence and its radius r is called the radius of convergence. It can be most
easily determined by the D’Alembert test:

Qn,

r= lim
n—oc

an+1
provided that a, # 0.
e Within the circle of convergence, power series behave exactly like ordinary

polynomials, i.e. we may sum, subtract, multiply and divide (provided that
the denominator # 0).



