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Preface

This book is devoted to the comprehensive bifurcation theory of chaos in nonlin-
ear dynamical systems with applications to mechanics and vibrations. Precise and
complete proofs of derived mathematical results are presented with many stimulat-
ing and illustrative examples. I study bifurcations of chaotic solutions for perturbed
problems from either homoclinic or heteroclinic orbits of unperturbed ones. This
method is also known as the Melnikov-type approach. Certainly there are many
interesting books in this direction, but all results of this book have not yet been
published in any book, since I have collected some results of mine together with
my coauthors appeared only in articles and manuscripts. So I hope that this book
is a useful contribution to a rapidly developing theory of chaos and it is a good
continuation of my recently published book in Springer with similar topics.

The book is intended to be used by scientists interested in the theory of chaos
and its applications, like mathematicians, physicists, or engineers. It can also serve
as a textbook for a class of nonlinear oscillations and dynamical systems.

Here is a brief outline of each chapter.

Chapter 1 is an introduction to the topic of the book by presenting two well-
known chaotic models: damped and driven Duffing and pendulum equations.

To make this book as self-contained as possible, some basic preliminary results
are included in Chapter 2.

Chapter 3 studies chaotic bifurcations of discrete dynamical systems including:
nonautonomous difference equations; diffeomorphisms; perturbed singular and sin-
gularly perturbed impulsive ordinary differential equations (ODES); and inflated dy-
namical systems arising in computer assisted proofs and in other numerical meth-
ods in dynamical systems, so an extension of Smale horseshoe to inflated dynamical
systems is presented.

Chapter 4 deals with proving chaos for parameterized ODEs in arbitrary dimen-
sions. It is shown that if the Melnikov function is identically zero the second order
Melnikov function must be derived. I consider a broad variety of ODEs: coupled
nonresonant ODEs, resonant systems of ODEs investigated with the help of aver-
aging theory; singularly perturbed ODEs; and inflated ODEs. 1 also show that the
structure of chaotic parameters is related to the Morin singularity of smooth map-



viii Preface

pings. I end this chapter with infinite dimensional ODEs on lattices by considering a
model of two one-dimensional interacting sublattices of harmonically coupled pro-
tons and heavy ions.

Chapter 5 shows chaotic vibrations of partial differential equations (PDEs):
slowly periodically perturbed and weakly nonlinear beams on elastic bearings; pe-
riodically forced and nonresonant buckled elastic beams; and periodically forced
compressed beams at resonance.

Chapter 6 is devoted to the study of chaotic oscillations of discontinuous (non-
smooth) differential equations (DDEs). First I consider the case when the homo-
clinic orbit of the unperturbed DDE transversally crosses discontinuity surfaces.
Then I study a chaos for time-perturbed DDEs. 1 apply our general results to
quasiperiodic piecewise linear systems in R3, and to piecewise smooth forced pla-
nar DDEs. Then I extend those result to sliding homoclinic bifurcations, when a part
of the homoclinic orbit of the unperturbed DDE lies on a discontinuity surface. A
rigorous proof of the existence of chaos for stick-slip systems is presented. I utilize
general theoretical results to planar and 3-dimensional sliding homoclinic cases.

In Chapter 7, first I investigate the Melnikov function in general by computing
its Fourier coefficients. These computations allow me to find examples when the
Melnikov function is ether identically zero or not. I also derive the second order
Melnikov function when the (first order) Melnikov function is identically zero. For
construction of concrete examples, I solve an inverse problem when the homoclinic
orbit is given and a second order ODE is found so that it possesses that homoclinic
orbit. The second part of this chapter is devoted to showing chaos near transversal
heteroclinic orbits. The third part deals with the blue sky catastrophe for periodic
orbits.

In all chapters, derived bifurcation conditions for the existence of chaos are ex-
pressed as simple zeroes of corresponding Melnikov functions. Functional analytic
approaches are used which are roughly based on a concept of exponential dichotomy
together with Lyapunov-Schmidt method. Numerical computations described by
figures are given with the help of a computational software program Mathematica.

The author is indebted to the coauthors for some results mentioned in this book:
Jan Awrejcewicz, Flaviano Battelli, Giovanni Colombo, Matteo Franca, Barnabés
M. Garay, Joseph Gruendler, Pawet Olejnik, Weiyao Zeng. Partial support of Grants
VEGA-SAV 2/0124/10, VEGA-MS 1/0098/08, an award from Literdrny fond and
by the Slovak Research and Development Agency under the contract No. APVV-
0414-07 are also appreciated.

Michal Fedkan
Bratislava, Slovakia
June 2010
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Chapter 1
Introduction

Many problems in the natural and engineering sciences can be modeled as evolution
processes. Mathematically this leads to either discrete or continuous dynamical sys-
tems, i.e. to either difference or differential equations. Usually such dynamical sys-
tems are nonlinear or even discontinuous and depend on parameters. Consequently
the study of qualitative behaviour of their solutions is very difficult. Rather effective
method for handling dynamical systems is the bifurcation theory, when the original
problem is a perturbation of a solvable problem, and we are interested in qualita-
tive changes of properties of solutions for small parameter variations. Nowadays the
bifurcation and perturbation theories are well developed and methods applied by
these theories are rather broad including functional-analytical tools and numerical
simulations as well [1-13].

Next, one of the fascinating behaviour of nonlinear dynamical systems which
may occur is their sensitive dependence on the initial value conditions, which results
in a chaotic time behaviour. Chaos is by no means exceptional but a typical property
of many dynamical systems in periodically stimulated cardiac cells, in electronic
circuits, in chemical reactions, in lasers, in mechanical devices, and in many other
models of biology, meteorology, economics and physics. In spite of the fact that it is
very difficult to show chaos for general evolution equations, the bifurcation theory
based on perturbation methods is a powerful tool for concluding chaos in a rather
wide class of parameterized nonlinear dynamical systems. Especially functional-
analytical methods are very convenient to show rigorously the existence of chaos in
concrete dynamical systems [14—20]. ’

Now we show two well-known simple chaotic mechanical models. First, we con-
sider a periodically forced and damped Duffing equation

A=y, ¥—x+2+y=cost (1.0.1)
with g, Uz being small. Note

J'c'—Hle—,H—ZJc3 = Upcost
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describes dynamics of a buckled beam, when only one mode of vibration is con-
sidered (cf Section 5.2 and [21]). Particularly, an experimental apparatus in {4, pp.
83-84] is a slender steel beam clamped to a rigid framework which supports two
magnets, when x is the beam tip displacement. The apparatus is periodically forced
using electromagnetic vibration generator (Figure 1.1).

Lp cost

1

N f N magnets
L = =il
s s ] rigid frame
Fig. 1.1 The magneto-elastic beam.
Next, the phase portrait of
i=y, y—x+2=0 (1.0.2)

is simply found analytically by analyzing the level sets 2 —x*> +x* =cec R [1,4,13].
Here R denotes the set of real numbers. There are three equilibria: (0,0) is hyper-
bolic and (+v/2/2,0) = (+0.707107,0) are centers. There is also a symmetric ho-
moclinic cycle +%,(t) with ¥4(t) = (ya(t), 2(t)) and 4 (t) = secht. The rest are all
periodic solutions. These results are consistent with the above experimental model
without damping and external forcing as follows: When attractive forces of the mag-
nets overcome the elastic force of the beam, the beam settles with its tip close to one
or more of the magnets: these are centers of (1.0.2). There is also an unstable central
equilibrium position of the beam at which the magnetic forces are canceled: this is
the unstable equilibrium of (1.0.2) (Figure 1.2).

When p;; are small and not identically zero, in spite of the fact that (1.0.1)
is a simply looking equation, its dynamics is very difficult. This is demonstrated in
Figure 1.3. We see that there are random oscillations of the beam tip between the two
magnets, These chaotic vibrations are also observed in the experimental apparatus
of Figure 1.1 as shown in [4, p. 84]. Theoretically it is justified by Lemma 7.2.4.
Note that almost all trajectories of the damped case y; > 0, y; = 0 tend to one of
the stable equilibria (-4/2/2,0) (cf case A of Figure 1.3).
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Fig. 1.2 The phase portrait of the Duffing equation (1.0.2).

~0i5
t
-1.0
C X D X
1.0 1.0
0.5 0.5

F
-~

s s 4 - Lot
00 200 3
-0.5 f[ -0.5
== 1_0 H
Fig. 1.3 The soluation x(t), 0 < ¢ < 400 of (1.0.1) for A: gy =0.001, > =0, x(0) =0.99, i(0) =0;

B: t; =0, ji = 0.01, x(0) = 0.99, %(0) = 0; C: jyy = 0.001, 3 = 0.01, x(0) = 0.99, £(0) = 0; D:
1 = 0.001, u; = 0.01, x(0) = 1.01, (0) = 0.

-1.0
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The aim of this book is to show chaos in (1.0.1) analytically. This is presented in
Section 4.1 and Subsection 5.2.6: now the Melnikov function is given by

= T . 2
M(e) = / Ya(t) (Upcos (o +1) — () dt = [,Lzﬂ:sechi sine — pi .
When U1, i satisfy
3n T
|| < luleSCChi = 1.87806| 3|, (1.0.3)

clearly there is a simple zero o of M, i.e. M(c) = 0 and M’ () # 0. Hence by
Remark 4.1.6, (1.0.1) is chaotic for u,, u, sufficiently small fulfilling (1.0.3). Note
(1.0.3) holds for cases B, C, D of Figure 1.3.

The second popular example of chaotic physical model is a damped and forced
pendulum consisting of a mass attached to a vertically oscillating pivot point by
means of mass-less and inextensible wire described by ODE ( [1, p. 278] and [22, p.
216])

é + 119 +sing = pycostsing, (1.0.4)

where p, ip are parameters (Figure 1.4).

periodic forcing

Fig. 1.4 The damped and forced pendulum (1.0.4).

The unperturbed ODE is given by

¢+sing =0 (1.0.5)

with the phase portrait in Figure 1.5.

Note that (2km,0) are centers and ((2k + 1)m,0) are hyperbolic equilibria of
(1.0.5) for k € Z. Here Z denotes the set of integer numbers. Moreover, (—r,0)
and (7,0) are joined by the upper separatrix or heteroclinic orbit ¥,(t) with
Yo(t) = (%p(2), 7(¢)) and y,(r) = 2arctan(sinhz). The lower separatrix is —7p(2).
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Fig. 1.5 The phase portrait of the pendulum equation (1.0.5).

When p;, are small and not identically zero, (1.0.4) has very difficult dynamics.
This is demonstrated in Figure 1.6.

B
1
I
cC ¢ D ¢
60 60
4
40 . W\
20 | ‘ ‘ - Lot
=D 100 200™M\ 300 400
SV r _40
400
i 0

Fig. 1.6 The solution ¢(¢), 0 < ¢t < 400 of (1.0.4) for A: p; = 0.01, pp =0, ¢(
B: i = 0.001, iz = 0.1, $(0) = 0, $(0) = 1.998; C: pt; = 0.001, iz = 0.1,
D: iy = 0.001, y1, = 0.1, $(0) = 0, $(0) = 2.002.

(=K=)
cC
[0
=
S
ee

Now the Melnikov function is given by [1, p. 467]

M(a) = [_m To() (U2 cos (o + 1) siny(2) — W1 7p(2)) dt = —2n,uzcschg sina — 8y, .
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When 1, U, satisfy

n;

> = 0341285, (1.0.6)

n
|p1] < |pz 5 esch

clearly there is a simple zero o of M, i.e. M(cp) = 0 and M'(0p) # 0. Hence by
Remark 4.1.6, (1.0.4) is chaotic for p1, ty sufficiently small fulfilling (1.0.6). Note
that (1.0.6) holds for cases B, C, D of Figure 1.6. Note that aimost all trajectories
of the damped case g, > 0, t; = 0 tend to the one of the stable equilibria (2k=,0),
k € Z (cf case A of Figure 1.6).

In summary, examples (1.0.1) and (1.0.4) have the following common features:
they are simply looking equations with unpredictable dynamics. But deriving their
Melnikov functions, it is easy to show their chaotic behaviour. Consequently, the
aim of this book is to present many different discrete and continuous dynamical
systems defined on spaces with arbitrarily high dimensions including infinite ones
when this Melnikov type analysis is shown to be useful, and then we demonstrate
abstract results on concrete examples.
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