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Introduction

In recent years particle theory has been very successful. The
theory agrees with the data wherever it could be tested, and while
the theory has its weak spots, this numerical agreement is a solid
fact. Physics is a quantitative science, and such agreement defines
its validity.

It is a fact that the theory, or rather the successful part, is
perturbation theory. Up to this day the methods for dealing with
non-perturbative situations are less than perfect. No one, for
example, can claim to understand fully the structure of the proton
or the pion in terms of quarks. The masses and other properties
of these particles have not really been understood in any detail.
It must be added that there exists, strictly speaking, no sound
starting point for dealing with non-perturbative situations.

Perturbation theory means Feynman diagrams. It appears
therefore that anyone working in elementary particle physics, ex-
perimentalist or theorist, needs to know about these objects. Here
there is a most curious situation: the resulting machinery is far
better than the originating theory. There are formalisms that in
the end produce the Feynman rules starting from the basic ideas
of quantum mechanics. However, these formalisms have flaws and
defects, and no derivation exists that can be called satisfactory.
The more or less standard formalism, the operator formalism,
uses objects that can be proven not to exist. The way that Feyn-
man originally found his diagrams, by using path integrals, can
hardly be called satisfactory either: on what argument rests the
assumption that a path integral describes nature? What is the
physical idea behind that formalism? Path integrals are objects
very popular among mathematically oriented theorists, but just
try to sell them to an experimentalist. However, to be more pos-
itive, given that one believes Feynman diagrams, path integrals

xi



xii Introduction

may be considered a very valuable tool to understand properties
of these diagrams. They are justified by the result, not by their
definition. They are mathematical tools.

Well, things are as they are. In this book the object is to
derive Feynman rules, but there is no good way to do that. The
physicist may take a pragmatic attitude: as long as it works,
so what. Indeed, that is a valid attitude. But that is really
not enough. Feynman rules have a true physics content, and the
physicist must understand that. He/she must know how Lorentz
invariance, conservation of probability, renormalizability reflect
themselves in the Feynman rules. In other words, even if there is
no rigorous foundation for these rules, the physical principles at
stake must be understood.

This then is the aim: to make it clear which principles are
behind the rules, and to define clearly the calculational details.
This requires some kind of derivation. The method used is basi-
cally the canonical formalism, but anything that is not strictly
necessary has been cut out. No one should have an excuse not un-
derstanding this book. Knowing about ordinary non-relativistic
quantum mechanics and classical relativity one should be able to
understand the reasoning.

This book is somewhat unusual in that I have tried very hard to
avoid numbering the equations and the figures. This has forced
me to keep all derivations and arguments closed in themselves,
and the reader needs not to have his fingers at eleven places to
follow an argument.

I am indebted to my friends and colleagues R. Akhoury, F'.
Erné, P. Federbush, P. Van Nieuwenhuizen and F.J. Yndurain.
They have read the manuscript critically and suggested many im-
provements.

The help of M. Jezabek in unraveling the complications of met-
ric usage is gratefully acknowledged. I have some hope that this
matter can now finally be put to rest, by providing a very simple
translation dictionary.

Ann Arbor, December 1993
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1

Lorentz and Poincaré Invariance

1.1 Lorentz Invariance

To begin with we will very briefly review some aspects of Ein-
stein’s theory of relativity that are of particular importance here.

The theory of relativity states that physical laws are the same
in two systems that move with respect to each other with uniform
velocity. Furthermore, the speed of light is a constant. These two
statements lead to the concept of invariance under Lorentz trans-
formations. We now first investigate Lorentz transformations in
some detail. Some of the rather basic mathematics involved is
summarized in an appendix.

Lorentz transformations can be understood as rotations in four-
dimensional space (three-dimensional space + time). A rotation
can be specified by a matrix L with the property that L (the
reflected of L) is its inverse:

L=L"' o LL=1.
Writing indices explicitly:
L“VLV,\ = 6,4)‘ or L#,,L)‘V = 5“,\ .

We have used here Einstein’s summation convention: twice oc-
curring indices (such as v here) are summed over (in this case
v = 1,...,4). At this point we must also settle some conven-
tions. We take the fourth dimension as imaginary, x4 = ict. This
leads to the fact that the matrix-elements of a Lorentz transfor-
mation are imaginary if one (but not both) of the indices is four.
With this convention a particle at rest has the four-momentum
(0,0,0,iM), where ¢ has already been taken to be one.

Let us emphasize that there is no physics in the choice of metric.

Some physicists prefer to work with real space/time but define
their dot-product with a metric involving minus signs. It is really

1



2 Lorentz and Poincaré Invariance

of no relevance where you hide your minus signs, at most it is a
matter of convenience. Which is usually what you are used to. It
is a matter though that you can debate hotly at lunch time (real
time). See appendix on metric.

Examples of Lorentz transformations are:

¢ ordinary rotations in three dimensions such as a rotation over
an angle ¢ around the third axis;
[ cos¢p sing O O
—sing cos¢p 0 O
0 0 10
[ o 0 0 1]
¢ transformation to a system moving with velocity v along the
first axis:

L=

" cos§d 0 O siné
0 10 0
0 01 0
| -sinf 0 0 cosf_

where 6 is imaginary and such that sin8 = iv/c8, 8 = /1 — v?/c2.
It follows that cos@ = /1 — sin>@ = 1/4. This transformation is
a rotation over an imaginary angle.

L=

In addition to the Lorentz transformations that have determi-
nant 1, such as the ordinary rotations and the velocity transforma-
tions there are also transformations with determinant —1. These
are the space or time reflections. These are not transformations
that you can actually do: nobody has ever managed to reflect him-
self, transforming himself from, say, a right handed person into a
left handed person. In particle physics it has been discovered that
the laws of nature are not invariant with respect to these reflec-
tions, although large parts of the interactions are. The reflections
remain therefore important tools in classifying interactions and
establishing selection rules.

A reflection is the combination of any ordinary Lorentz trans-
formation and a space reflection P or time reversal T:

-1 0 0 O 100 O
0 -1 0 0 010 O
P= 0 0 -1 0 T= 001 O
0 0 0 1 0 0 0 -1



1.1 Lorentz Invariance 3

There are a number of fundamental differences about rotations
over real versus imaginary angles. Rotating over a real angle of 27
gives the identity, because sin(27) = 0 and cos(27) = 1. Thus two
successive rotations may lead back to the original (for example a
rotation of 30° followed by a rotation of 330°). Since no such
thing holds for imaginary angles this is not true for the rotations
over imaginary angles. In fact:

. 1 /i  _—io
sinf = % (e —e ),
and if 4 is imaginary, § = ia with real «, then
: — 1 - (4]
sm()—ﬁg (e —e ),

which grows exponentially for 6 going to either +ico. Thus while
the domain of the angle ¢ for spatial rotations is finite, 0 < ¢ <
27, the domain of 6 is infinite. The rotations in three dimensions
form a compact group (finite domain of the parameters) while
the full set of Lorentz transformations is non-compact. To judge
on compact versus non-compact on the basis of the domain of
the parameters one must first specify how the parameters are to
be chosen; the requirement is that they be chosen such that two
successive applications of the same transformation described by
the parameters a;,...,a, must be given by the transformation
described by the parameters 2a;, ..., 2a,. For example, two suc-
cessive rotations over an angle § equals a rotation over an angle
20, and that means that the parameter 6 is appropriate for a judg-
ment on compactness. The importance of compactness relates to
group theory: compact groups have unitary representations. The
Lorentz group is non-compact, and its representations are not
necessarily unitary. At this point there is no need to understand
this mathematically in any detail.

A general Lorentz transformation can be seen as a combination
of a rotation in three dimensional space followed by a transforma-
tion to a system moving with some velocity in some direction. A
rotation can be specified by three parameters, for example by a
vector whose direction is the axis of rotation while its magnitude
equals the magnitude of the rotation. Thus the vector (0,0, 7/2)
specifies a rotation over 90° around the third axis. The “veloc-
ity” transformation can be specified by giving the velocity, which
is also a three component vector. It would be nice if we could



4 Lorentz and Poincaré Invariance

talk in terms of an axis and an imaginary angle also in this case,
but that is not important at this moment. The important point is
that we observe that a Lorentz transformation is specified by six
parameters. Three have a finite, three an infinite domain. The
Lorentz-transformations form a six-parameter group.

Since any finite rotation can be seen as an infinite sequence of
infinitesimal rotations it is sufficient for most purposes to under-
stand infinitesimal Lorentz transformations. Let us first consider
a rotation over an angle ¢ around the third axis. Its form has
been given above, and we will denote it by L(¢). This rotation
can be obtained also by applying n times a rotation over an angle

o/n:
o= (@)

Let us now consider a rotation over an angle ¢/n with very large
n. We may then expand sin(¢/n) and cos(¢/n) to get:

1 ¢/n 0 O
uom= 174" o 1 o|*O(#m)
0 0 01

=I+ %L;; +0 <¢2/n2)

with
0 1 00
-1 0 0 0
Ls=19 00 0
0 0 0 0

and I denoting the unit matrix. In the limit of large n:
= i ¢ " — oPL3
L(¢) = Jim [L (ﬁ = eP43,
Exercise 1.1 Read the appendix on matrices or else show that

[1+%+o(£§)]n=ea+o<%).

We have now written this Lorentz transformation in exponential
form. The great advantage is that the parameter ¢ is directly
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visible, and the property L(¢)L(¢) = L(2¢) is manifest:
ePLs obLa _ p2¢L3

Similarly other rotations may be treated. A general infinitesimal
rotation in three dimensions differs infinitesimally from the unit
matrix:

l1+g a b0
R= d 1+h c 0
n e f 1+k 0O
0 0 0 1

with a...k infinitesimal. For a rotation the equation RR = 1
holds, and this leads totheresult h =g =k =0,d = —a, e = —-b
and f = —c (ignoring higher order terms in g, b, etc.).

Exercise 1.2 Prove this assertion.

We therefore can write:
R=1+4cLy—bLs+als

with

0 0 00 00 -1 0
10 0 10 100 0 0O
Li=lg 1 0 0l 2|10 0 o
0 0 0 0 00 0 O

0 100

-1 0 0 0

Ls=14 0 0 0

0 0 0 0

The reason for the sign choices above will become clear shortly.
Since a finite transformation can be obtained by exponentiation of
an infinitesimal one we so find a representation in terms of three
parameters for any rotation in three dimensions:

R = exilaitaalotasls _ paili

The three quantities «; are precisely equal to the vector used
to describe rotations introduced above. Thus the direction of o
is the axis of rotation, the magnitude is the magnitude of the ro-
tation in radians. The sense of the rotation is this: if & points
upwards, along the positive third axis, then a small rotation will
turn a vector along the positive first axis into a vector having
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a small negative second component. From the above this con-
nection is obvious for the special cases of rotations around first,
second, or third axis. For the general case this becomes obvious
by considering an infinitesimal rotation:

1 a3 ~az 0
—az L O Bnitesimal.
a2 —ay 1 0

0 0 0 1
This matrix describes an infinitesimal rotation over an angle A =

ya? + o + af around an axis in the direction @ The choice of
signs for the L; was made such as to obtain this.

Exercise 1.3 Verify the above

by showing that a vector in the A

direction of & is invariant, while /M 2

a vector perpendicular to &, for

example the unit vector ¥ with -
components A(ag,—a1,0,0) with

A = 1/y/(a? + o3), is changed by an amount corresponding to a
rotation over an angle A. Thus compute the effect of the infinites-

imal rotation on 7, writing the result in the form ¥+ €. Show that
€ is orthogonal to 7 and &, and has the magnitude A.

This treatment can be extended trivially to include the “vel-
ocity” transformations. A general “velocity” transformation will
be of the form:

V = ePrM1+B2M2+53 M3

with imaginary (i, B2 and (33 and real M;, M2 and M3:

0 00 1 0 0 00

{0 o000 o 0 01

Mi=149 000 M=|p 0 0o

100 0 0 -1 0 0
00 0 0
loo o o
Ms=1g 0 0 1
00 -1 0

Of course we could equally well have used real B and imaginary
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M, but we will do it this way. Writing 5 = 17, a particle of mass m
at rest is transformed into a particle moving with momentum p =
—mu. Note that the ¥ here is the conventional velocity divided
by the relativistic factor 3.
The general Lorentz transformation is of the form
L = e®iLitBiM;

but the interpretation of the a; and f; in terms of axis of rotation
or velocity is no more as easy as above.

At this point it is necessary to introduce a new and sometimes
slightly confusing notation. We write:

L= e’}"*"’K*‘", wrv=1..4.

The matrices K are defined by the prescription that K, is a
matrix with 1 in row g, column v, and —1 in row v, column u.
Otherwise its elements are zero. Note that K,, = —K,,. The
o, are chosen such as to give the correct result. Thus, given that
L; = K»3, L, = —K\3 and L3 = K2 the correspondence is:

ajp > Qg3 B1 < aia

ag & a3] B2 & g

az « a2 B3 < azs
while the remaining o are defined by a,, = —a,,.

The confusion may arise by not being careful about indices.
The K are 4 x 4 matrices, the o are numbers with a,, real if
v =123, or p =v =4, and imaginary if p or v = 4. To be
very explicit, the matrix-element %, j of the matrix K3 could be
written as

(K13);; -

1.2 Structure of the Lorentz Group

We must now study the structure of the Lorentz group, by which
we mean the following. Two successive Lorentz transformations
equals another Lorentz transformation, and we must understand
this connection in terms of the parameters o,,,. Thus, let there be
given two Lorentz transformations described by parameters o,
and 3, respectively. The product of these two is another Lorentz
transformation described by parameters v, and we would like to



