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Preface

The major purpose of this book is to introduce the growth of Laplace-Stieltjes
transforms and the singular direction of complex analysis. The book contains five
chapters, each chapter is self-contained. Our main contribution here is to provide some
new research directions on Dirichlet series, Laplace transforms and the distribution of
values of complex analysis for the readers.

Chapter 1 is concerned with the basic fundamentals of Laplace-Stieltjes (L-S) trans-
forms and provides a convenient introduction to such transforms, which is the extension
of Dirichlet series. We define the type, the precise order and the Type-function U(r)
of L-S transforms convergent in the complex plane and investigate the growth and the
distribution of values of such functions by using Valiron-Knopp-Bohr formulas. At last,
we study the abscissa of convergence of L-S transforms independent on the sequence
{An}, which renew some results of Dirichlet series.

In Chapter 2, the growth and the distribution of value of the L-S transforms con-
vergent in the right half-plane will be studied. By the introduction of the exponential
order and the exponential low order, we discuss some problems on the low order of
L-S transforms with zero order, cstablish some relations of the exponential order, the
exponential low order and A}, and extend the relative results of Dirichlet series. More-
over, some properties of the L-S transforms and its relative transforms are obtained.
In addition, we prove the existence of Borel points of such analytic functions with the
finite positive order and the infinite order.

In Chapter 3, by Ahlfors’s covering surface method, some Type-functions’ singular
directions of k-quasimeromorphic mappings are studied. The largest type Borel direc-
tion(with their multiple values) on the Type-function U(r) is also a Borel direction. In
addition, the above results have been extended to the case of the unit disc, the existence
theorem of a singular radius, named S-radius (7 direction in the case of the complex
plane for meromorphic functions) has been established. Furthermore, the existence of
filling discs in Borel radius of the quasimeromorphic mapping with finite order in the
unit disc is proved, which briefly extend the results of A. Rauch.

In Chapter 4, some properties of meromorphic functions have been generalized to
multi-valued algebroidal functions, an extension theorem for the algebroidal function,
which is the connection between the Nevanlinna characteristic function and the maxi-
mum modulus, is obtained. By which, we show that the order of the entire algebroidal
function is equal to that of its derived function. Some singular directions of the alge-
broidal function, such as T-radius, Borel direction and the filling discs are introduced.
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The existence theorems and their relations are obtained. Moreover, some research on
the algebroidal function and its derived function in the unit disc and the normality
criteria for families have been shown.

In Chapter 5, some interesting relations on the maximum modulus, the maximum
term, the rank of maximum term and the coefficients of integral functions defined by
Dirichlet series or the random Dirichlet series have been studied. For the random
Dirichlet series of infinite order, we replace exceptional values by exceptional small
functions, and show that every horizontal line is a strong Borel line almost surely(a.s.)
without exceptional small functions. Finally, we study the pits on some entire Dirichlet
series and give an estimation of the upper and the lower bounds of the generalized order
and the generalized type of a new product function, named Dirichlet-Hadamard product
function.
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Chapter 1

On the growth of the
Laplace-Stieltjes transform
convergent in the complex plane

1.1 Entire functions represented by the L-S transform

1.1.1 The introduction of the Laplace-Stieltjes transform

The L-8 transform, named for Pierre-Simon Laplace and Thomas Joannes Stieltjes,
is an integral transform similar to the Laplace transform. For real-valued functions, it
is the Laplace transform of a Stieltjes measure, however it is often defined for functions
with values in a Banach space. It is useful in a number of areas of mathematics,
including functional analysis, and certain areas of theoretical and applied probability.
The Laplace-Stieltjes transform of a real-valued function 9 is given by a Lebesgue-
Stieltjes integral of the form

/ e **dg(z)

for s a complex number. As with the usual Laplace transform, one gets a slightly
different transform depending on the domain of integration, and for the integral to
be defined, one also needs to require that g be of bounded variation on the region of
integration. The most common are: \

The bilateral (or two-sided) Laplace-Stieltjes transform is given by

{Lghs) = [ edg(a).

(s o]

1
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The unilateral (one-sided) Laplace-Stieltjes transform is given by
o0
{Lal(s) = [ e *dgl(z),
where the lower limit 0~ means that lim,_o- 2. This is necessary to ensure that
the transform captures a possible jump in g(z) at £ = 0, as is needed to make sense

of the Laplace transform of the Dirac delta function. More general transforms can be
considered by integrating over a contour in the complex plane.

1.1.2 Valiron-Knopp formula on the abscissas of convergent

Laplace-Stieltjes transform is the extension of Laplace transform, at the same time it
is the extension of Dirichlet series. Especially, Laplace transform makes a contribution
towards the technique of electric wave transmission, so the research of the L-S transform
helps to do some development of applied studies. Dirichlet series was introduced by
L.Dirichlet in 19th century and it has the following form:

o0
f(s) = Z ane (s = o +it;0,t € R),

n=1

where {a,} C C,0 < A1 < Ag--- < Ap T +00. The growth and the value distribution
of such series were investigated for a long time by Yu [148], Sun [154] and Gao [32].
Recently, Shang Lina and authors continued doing some correlative research on this
respect and obtained other interesting results in [67] and [111] . Dirichlet series was
regarded as a special example of the L-S transform in [59] and [151] .

Some problems on Borel-line of integral functions defined by Dirichlet series were
firstly studied by G.Valiron [23]. His studies based on a summing way of a series
from Borel’s. Yu [151] studied this problem and related problems largely according to
Valiron’s way. But in the research of Valiron and Yu’s, they need to add a condition
to the series

‘1153;-11;_" < +00. (1.0)
By applying the methods of Knopp [59], Kojima and Fujiwara, they extended Cauchy-
Hadamard formula of power series to that of Dirichlet series. However, when Tanaka
[11] studied Borel-line of integral functions defined by general Dirichlet series, he can-
celed the condition (1.0) and obtained a more universal result.

By moving the condition (1.0) to the L-S transform, Yu first studied Borel-line of
integral functions defined by the L-S transform in [151], where the L-S transform was
actually a transform very close to Dirichlet series. In 1963, Yu studied a more general
Borel-line of integral functions defined by the L-S transform [146] and greatly improved

2



Chapter 1. On the growth of the Laplace-Stieltjes transform convergent in the complex plane

some results of {151]. This is what we will introduce in this section. The methods here
are a little different from that of Tanaka. Further, we want to establish the theorem of
Liouville type for integral functions defined by the L-S transform.

In this section, we will combine the ideas of Valiron [23] and Knopp [59], and extend
Cauchy-Hadamard formula of power series (or Dirichlet series) to the L-S transform.
Yu [152] has already published corresponding result of two-fold Dirichlet series and
two-fold L-S transforms. The results and proofs in this section are similar to what was
published in [152], hence we ignore some details.

Consider a Laplace-Stieltjes transform of the form [19]

F(s) = /0+°° e **da(z) (s = o +it), (L)

where a(z) is a defined real-valued or complex-valued function with £ > 0, and it is of
bounded variation on any closed interval [0, X](0 < X < +o0). In this book, we will
make such hypothesis for a(z) at all times. We denote by V(z) the total variation on
closed interval [0, X]. If a(z) satisfies certain conditions, then (1.1) reduce to Dirichlet
seriés f(s), so it is regarded as a special case of the L-S transform.

We define the abscissa of convergence ac , the abscissa of uniform convergence of
and the abscissa of absolute convergence af of the L-S transform F(s) respectively as

of = inf{op; F(s) is convergent when o > ag};

aF inf{oy; F(s) is uniformly convergent when o > o1};

F = inf{oy; F(s) is absolutely convergent when o > o2}.
Next we will study these abscissas and their relations.
Put a sequence {A,}:

0= <A< A3 < - <Ay T +o0, (1-2)

which satisfies the following conditions:

S P —Inn
7115130()\”4,1 — M) < o0, Tim_ = =D < 4o0. (1.3)

n—o0 n
Set a comparison series

[o o]
g(s) =) e™ns.
n=1

According to Valiron formula [23], we can easily show that the abscissa of convergence
og, the abscissa of absolute convergence ¢ and the abscissa of uniform convergence oJ
of this series satisfy the following relations

0<0i<od<0I<D.

By using the comparison series, we can introduce the following theorem.

3
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Theorem 1.1 Suppose that the L-S transform (1.1) satisfies (1.2) and (1.3), then
In A, ——InA,

lim <of < Tim +D, (1.4)
n—oo n n—roo n
where A, = sup |a(z) — a(Ay)].

An<z<Ant1

Proof. We only prove the case when o and 1—“)\%“ = [ are finite. The other cases can
be easily proved by the similar method.

Firstly, we prove the latter half of formula (1.4). For any given € > 0, when 7 is
sufficiently large, A, < e*{+€), Notice (1.3), we can deduce that there exists a constant

K > 0, such that
0<Apt1— M<K (n=1,2,3,---), (1.5)

and we have

[ o aa(e) = la(@) — o) B2 4o [ e la(z) — awlda.

3

Therefore

An+1 A A A
[ e da(e)] < An(e e 4 foHn - e
An

<

2A,e M0 when o >0,
2Ape M+10 < 24,6~ (MntK)o - yhen o < 0.

When 7 is sufficiently large, it follows that
Ant1 —0z4 ( )l < K( )A —Ano —An(o—l—¢
- —_ T mn )
| [\ e oz (0)Ane < Ki(0)Apen( )

where K/ (o) is 2 when o > 0, and 2¢%° when o < 0.
Since

] s n—1 Ak4+1 s T
/0 e ¥da(y) = Z/A e ¥da(y) +/A e ¥da(y) (A <z <Apy1),
k=1 k n

and the series 3" e *»(~1=¢) s absolutely convergent when ¢ — I — e > D. It follows
that the transform (1.1) is convergent when s = o > [+ D + €. Since ¢ is arbitrary, the
latter half of formula (1.4) is proved.

Now suppose that the transform (1.1) is convergent when s = og, here oy is a real
number. So there exists a finite constant M > 0, such that

I/oz e™"%da(y)| < M

4



Chapter 1. On the growth of the Laplace-Stieltjes transform convergent in the complex plane

holds for arbitrary > 0. Put

Ix(z; 09) = /: e %%da(y) (z > Ak)-

k

Then we can see that |Ix(z;00)] < 2M (n=1,2,3,--:). Now suppose that A\, < z <
An+1, We have

T z T
day) = [ oo Udaly) = [ ™Vdla(yion)
An An An

T
= e"¥I,(y;00)[%, — 00 [\ e”¥In(y; oo)dy

n

X
= e”"OIn(a:;ao)—a()/ e?¥ I, (y; 00)dy.
A

(]

Therefore
la(z) — a(An)| < 2M (e + [€77° — *770|) < Ka(og)e™.

Hence A, < Ka(og)e*?, where Ka(0p) = 4MeX?0 when op > 0, Ka(09) = 4M when
o9 < 0. So

n

Hence the front half of formula (1.4) gets proved.
Theorem 1.2 Suppose that the L-S transform (1.1) satisfies (1.2) and (1.3), then

An © An

lim + D)
n—o0

where A, = ;‘:*’1 |[da(z)] = V(An+1) — V(An).
Theorem 1.3 Suppose that the L-S transform (1.1) satisfies (1.2) and (1.3), then

A* — In A*
im —" < of < Tm —"+ D, (1.6)
n—o0 n n—oo- n
where z .
AL = sup | [ e ivdagy)). (17)
An<z<Ant1,—00<t<+oo JAn

The proof of the two theorems above can be found in paper [152]. By the three
theorems above, we can introduce the corresponding formula about Dirichlet series and
the Laplace transform with Valiron formula as a special case. Knopp’s formula [59] is
the special case of Theorem 1.1 and Theorem 1.2, when A, = n — 1. The formula (1.6)
is called Valiron-Knopp-Bohr formula.
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1.1.3 The maximum modulus and the maximum term of entire functions
defined by the L-S transform

The relation between the maximum modulus of entire functions and the maximum
term of Taylor series plays an important part when studying integral functions defined
by Taylor series. If we want to study such properties of entire functions defined by
Dirichlet series or the L-S transform, firstly we should set up a corresponding relation.
But it exists certain difficulty, so Ritt [110] and Valiron [23] introduced the condition
(1.0) when they studied integral functions defined by Dirichlet series. Tanaka [11]
gave suitable concepts of “the maximum modulus” and “the maximum term” to
Dirichlet series, and deduced the relation between them. In the following, we will
study “the maximum modulus” and “the maximum term” of integral functions by
the L-S transform, the form of which is more universal than that introduced by Tanaka.
We will also_deduce the theorem of Liouville type to entire functions defined by the
L-S transform, by applying the getting relation.

Suppose that the transform (1.1) satisfies 0f = —oo, then F(s) is an entire function.

Choose the sequence (1.2) which satisfies the conditions (1.3). Set

M@fﬁ{ﬁ%&www+mh

T .
My(o, F) = sup | [ e rindagy),
0<z<400,—00<t<+00 JO

_ * —Ano
wo F) = max {Ane™ "7},
where A7, is defined by (1.7). We call M, (o, F') the mazimum modulus of F(s), u(o, F)
the mazimum term of F(s). .

Because of = —oo, by (1.6) it is not difficult to see that u(o, F) is meaningful.
{Pn} = {(=Xn,—InA4})}H(n = 1,2,---) denotes a sequence points on the zOy plane.
Make a convex Newton polygon II(F) based on these points, such that its vertexes
are points in {P,} and the other points in {P,} are on or above the edge of II(F).
Construct it like this: fetch a downward perpendicular half line beginning with P, and
let it twist anticlockwise.until crossing a point in {F,}. If P; is the farthest point in
{P.} on the line to P, we let the segment P, P; be an edge of II(F). Extending it,
then we have a half line beginning with P3. Let it twist anticlockwise until crossing a
point in {F,}. If Pg is the farthest point in {P,} on the line to P3, we let the segment
P;P5 be the other edge of II(F) - - - Then there is a Newton polygon which satisfies the
assumption above. Let n(c) denote the largest one of indexes of all points {P,} on
such lines, which go through P, with their slope of o but do not traverse the polygon
II(F). So

w(o, F) = A;‘_‘L(a)e—z\n(c)a.

6



Chapter 1. On the growth of the Laplace-Stieltjes transform convergent in the complex plane

Let Gy, denote the y-axis of the points on the edge of II(F'), the abscissa of which is
—An. Therefore
Gn < - lllAn, Gn(a) =—In An(o-)-

It is not difficult to have

—Gi, when o > —-%-é\?,
Inp(o, F) = ~G2-Gy GG
—G1+ [5 T Ay(gyde, when o < —FA=FL.
Thus we can see that In u(o, F) is a decreasing convex function.
We define
- —.—ln+ 1n+ M(U,F)
p= lim )
e —00 —
——IntInt My(o, F)
p= lim —,
g——00 —0o
+int
o, = T In™ In™ u(o, F),
o——o0 —0

where In™ B = max{ln B,0}. 7 and p are called the linear order(Ritt order) and the
order of entire functions F(s) respectively. Obviously, M (o, F) < M, (o, F), thus 5 < p.
- When p € (0, +00), p = 400 or p = 0, we say that F(s) is an analytic function of finite
positive order, infinite order or zero order in the complex plane, respectively. We can
also define values corresponding to 7, p and p, in a strip region. Now we are going to
find the relation between M, (o, F) and p(o, F).

Theorem 1.4 Suppose that f = —c0, and the sequence (1.2) satisfies (1.3), then for
any given £ > 0, when o < 0, we have :
1 o0
SH(0,F) < My(0,F) < 2u(c — D~ ¢, F)e™ 57 3~ e (P49), (1.8)
n=1
where K is the constant from (1.5).
Proof. Firstly, we prove the front half of formula (1.8). Set

T .
I(z;0 +it) = / e~ ety dn(y).
0
We have

' . T
/ e Mda(y) = / e’Vd, I(y; o + it)
A A

n n

T
= I(y;o+it)e™ff, —o /,\ e I(yio+it)dy (x> An).

n

7
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Therefore when ¢ < 0, it follows that
T . | -

| / e Wda(y)| < Mu(o, F)[[e°® + ™| + [°° — e ] < 2Mu(o, F)e™® (2 > Mn).
An

Thus A}, < 2M,(0, F)e’® (o < 0), then the front half of formula (1.8) is obtained.
Secondly, for any = > 0, there exists n € N, A, < £ < A,41, such that

= . n—1 . H
[ inda) =3 [ e tindag) + [ e Hnaay)
0 k=17 2k An

Set
T .
Ii(z;it) = A e MWda(y) O < 2 < Aepa). (1.9)
k
For any t € R, when Ay < z < Ag41, we obtain
[Ix(z;it)| < Af < p(o, F)e*  or |Ii(x;it)] < p(o — D — ¢, F)e(@—D—e),

Hence for any z € (Ag, Ak+1] and o <0,
. ~1
JEe ot da(y) = nz f)"““ e~ 7Vdy Ik (y; it) + [y, e~¥dyIx(y;it)

= E [e= 26+ T (A1 i8) + 0 [+ €V (y; it)dy]
+e7% In(z;it) + 0[5 e7 VI, (y;it)dy.
Therefore
| JS e—(a+it)yda(y)| < Z p(o — D — ¢, F)e*k(e=D _5)(e—>‘k+10 oMo _ g M)
(0 = D — &, P)er(o-D=0)(g-0 4 ¢=02 _ o=nc)
< nil 2u(o — D — ¢, F)e"k("‘D—E)e—AHW
k:—?—z;z(a — D — ¢, F)e*(0-D-€)g=Ant10
< El 2u(o — D — g, F)e*(9=D=€)e=QetK)o
+2u(o — D — g, F)e*(0~D—e)g=(An+K)o

=2u(c — D —¢,Fle K7 f: e~ Mu(D+e)
k=1
where K is from (1.5). From the second formula of (1.3), for the above € > 0, when n
is sufficiently large, it follows that Inn < A,(D+ §),
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Consequently Y e=*n(D+e) ig convergent. This completes the proof.
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