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Preface

The purpose of this book is to unify and document in one place many of the
techniques and much of the current understanding about solving systems of lin-
ear equations on vector and parallel computers. This book is not a textbook,
but it is meant to provide a fast entrance to the world of vector and parallel
processing for these linear algebra applications. We intend this book to be used
by three groups of readers: graduate students, researchers working in compu-
tational science, and numerical analysts. As such, we hope this book can serve
both as a reference and as a supplement to a teaching text on aspects of scientific
computation.

The book is divided into five major parts: (1) introduction to terms and
concepts, including an overview of the state of the art for high-performance
computers and a discussion of performance evaluation (Chapters 1-4); (2) di-
rect solution of dense matrix problems (Chapter 5); (3) direct solution of sparse
systems of equations (Chapter 6); (4) iterative solution of sparse systems of
equations (Chapters 7-9); and (5) iterative solution of sparse eigenvalue prob-
lems (Chapters 10-11). Any book that attempts to cover these topics must
necessarily be somewhat out of date before it appears, because the area is in a
state of flux. We have purposely avoided highly detailed descriptions of popu-
lar machines and have tried instead to focus on concepts as much as possible;
nevertheless, to make the description more concrete, we do point to specific
computers.

Rather than include a floppy disk containing the software described in the
book, we have included a pointer to netlib. The problem with floppies in books is
that they are never around when one needs them, and the software may undergo
changes to correct problems or incorporate new ideas. The software included in
netlib is in the public domain and can be used freely. With netlib we hope to
have up-to-date software available at all times. A directory in netlib called ddsv
contains the software (see http://www.netlib.org/ddsv/), and Appendix A
of this book discusses what is available and how to make a request from netlib.

This book is a major revision to the book entitled Solving Linear Systems
on Vector and Shared Memory Computers, published by SIAM in 1990. The
book updates the material focusing on vector and parallel computing for linear
algebra and includes new material on the eigenvalue problem.

We express appreciation to all those who helped in the preparation of this
work, in particular to Gail Pieper for her tireless efforts in proofreading drafts
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xvi Preface

and improving the quality of the presentation and to Ed Anderson, Michael
Botchev, Jeremy Du Croz, Victor Eijkhout, Robert Funderlic, Antoine Petitet,
and Charlie Van Loan for their help in proofreading and their many sugges-
tions to improve the readability. Much of the dense linear algebra parts would
not be possible without the efforts and support of the developers of LAPACK,
ScalLAPACK, and ARPACK.

Jack J. Dongarra

Iain S. Duff

Danny C. Sorensen
Henk A. ven der Vorst



Introduction

The recent availability of advanced-architecture computers has had a significant
impact on all spheres of scientific computation including algorithm research
and software development in numerical linear algebra. This book discusses
some of the major elements of these new computers and indicates some recent
developments in sparse and full linear algebra that are designed to exploit these
elements.

The three main novel aspects of these advanced computers are the use of
vectorization, parallelism, and super-scalar architectures, although how these
are accommodated varies greatly between architectures. The first commercially
available vector machine to have a significant impact on scientific computing was
the CRAY-1, the first machine being delivered to Los Alamos in 1976. Thus,
the use of vectorization is by now quite mature, and a good understanding of
this architectural feature and general guidelines for its exploitation are now
well established. However, the first commercially viable parallel machine was
the Alliant in 1985, and more highly parallel machines did not appear on the
marketplace until 1988. Thus, there remains a relative lack of definition and ma-
turity in this area, although some guidelines and standards on the exploitation
of parallelism are beginning to emerge. )

Our background is in scientific computing rather than computer scientists;
as such, one of our intentions in writing this book is to provide the comput-
ing infrastructure and necessary definitions to guide the computational scientist
and, at the very least, to equip him or her with enough understanding to be
able to read computer documentation and appreciate the influence of some of
the major aspects of novel computer design. The majority of this basic material
is covered in Chapter 1, although we address further aspects related to imple-
mentation and performance in Chapters 3 and 4. In such a volatile marketplace
it is not sensible to concentrate too heavily on any specific architecture or any
particular manufacturer, but we feel it is useful to illustrate our general remarks
by reference to some currently existing machines. This we do in Chapter 2, as
well as in Chapter 4 where we present some performance profiles for current
machines.

Linear algebra, in particular the solution of linear systems of equations and
eigenvalue problems, lies at the heart of most calculations in scientific comput-
ing. We thus concentrate on this area in this book, examining algorithms and
software for dense coefficient matrices in Chapter 5 and for sparse direct sys-
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xviii Introduction

tems in Chapter 6; iterative methods of solution are covered in Chapters 7-9,
and Chapters 10 and 11 deal with large sparse eigenvlaue problems.

Within scientific computation, parallelism can be exploited at several levels.
At the highest level a problem may be subdivided even before its discretiza-
tion into a linear (or nonlinear) system. This technique, typified by domain
decomposition, usually results in large parallel tasks ideal for mapping onto a
distributed-memory architecture. In keeping with our decision to minimize ma-
chine description, we refer only briefly to this form of algorithmic parallelism in
the following, concentrating instead on the solution of the discretized subprob-
lems. Even here, more than one level of parallelism can exist—for example, if
the discretized problem is sparse. We discuss sparsity exploitation in Chapters
6 and 7.

Our main algorithmic paradigm for exploiting both vectorization and paral-
lelism in the sparse and the full case is the use of block algorithms, particularly
in conjunction with highly tuned kernels for effecting matrix-vector and matrix-
matrix operations. We discuss the design of these building blocks in Section
5.1 and their use in the solution of dense equations in the rest of Chapter 5.
We discuss their use in the solution of sparse systems in Chapter 6, particularly
Sections 6.4 and 6.5.

As we said in the preface, this book is intended to serve as a reference and
as a supplementary teaching text for graduate students, researchers working
in computational science, and numerical analysts. At the very least, the book
should provide background, definitions, and basic techniques so that researchers
can understand and exploit the new generation of computers with greater facility
and efficiency.
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Chapter 1

High-Performance
Computing

In this chapter we review some of the basic features of traditional and ad-
vanced computers. The review is not intended to be a complete discussion of
the architecture of any particular machine or a detailed analysis of computer ar-
chitectures. Rather, our focus is on certain features that are especially relevant
to the implementation of linear algebra algorithms.

1.1 Trends in Computer Design

In the past decade, the world has experienced one of the most exciting peri-
ods in computer development. Computer performance improvements have been
dramatic—a trend that promises to continue for the next several years. One
reason for the improved performance is the rapid advance in microprocessor
technology. Microprocessors have become smaller, denser, and more powerful.
Indeed, if cars had made equal progress, you could buy a car for a few dollars,
drive it across the country in a few minutes, and “park” the car in your pocket!
The result is that microprocessor-based supercomputing is rapidly becoming
the technology of preference in attacking some of the most important problems
of science and engineering. To exploit microprocessor technology, vendors have
developed highly parallel computers.

Highly parallel systems offer the enormous computational power needed for
solving some of our most challenging computational problems such as simulat-
ing the climate. Unfortunately, software development has not kept pace with
hardware advances. New programming paradigms, languages, scheduling and
partitioning techniques, and algorithms are needed to fully exploit the power of
these highly parallel machines.

A major new trend for scientific problem solving is distributed computing.
In distributed computing, computers connected by a network are used collec-
tively to solve a single large problem. Many scientists are discovering that their

1



