&4 A B oAU L 6 SO AR

Jack J. Dongarra
g lain S. Duff, Danny C. Sorensen ¥
Henk A. van der Vorst

TSINGHUA sjm

UNIVERSITY PRESS



Numerical Linear Algebra on
High-Performance Computers

)

54 e oh LA b 6 HCAE B AR

Jack J. Dongarra, lain S, Duff
Danny C. Sorensen #
Henk A. van der Vorst

(8) TSINGHUA siam

dER



Jack J. Dongarra, Iain S. Duff, Danny C. Sorensen, Henk A. van der Vorst
Numerical Linear Algebra on High-Performance Computers
ISBN:0-89871-428-1

Copyright © 1998 by SIAM.

Original American edition published by SIAM: Society for Industrial and Applied Mathematics,
Philadelphia, Pennsylvania. All Rights Reserved.
ABFRESIAME R . BAUTAE , BWENLI.

Tsinghua University Press is authorized by SIAM to publish and distribute exclusively this English
language reprint edition. This edition is authorized for sale in the People’s Republic of China only
(excluding Hong Kong, Macao SAR and Taiwan). Unauthorized export of this edition is a violation
of the Copyright Act. No part of this publication may be reproduced or distributed by any means, or
stored in a database or retrieval system, without the prior written permission of the publisher.

EFERE IR B SIAMEBRUE £ X R AR IR AR &R 17 IEARA I REEh A R#EFIEER
(FERFEEE. RINHNITHRRPEAEHX ) S, REBNEBHOBHERNE
RAAUERIATH. REHBEFEREFT, FEUEAHREHRZTEBHEMES

IEREATRUBEENAREICE E5F. 01-2008-0792
REBLERE, BHENLASY, BIRMIE: 010-62782989 13701121933
EEERSEE (CIP) KiE

I ERE T B L A EER HEREL = Numerical Linear Algebra on High-Performance Computers:

X/ (E) £4B4L (Dongarra, J. 1.) HF - A . - db5. HERKA¥ B, 20112
(HFRELHFAESR)

ISBN 978-7-302-24499-8

I. D& 0. 0% M. OLttEntEy-%xx V. 002416
T ERE AR FBIECIPEIEET (2010) %2608055

HIERE: Ry

REMS. TS

W& 7. E R RAL i HE: LR EE R RE A B
http:/www. tup. com. cn B #%: 100084
3t A Hl. 010-62770175 i M. 010-62786544

BESEHERS: 010-62776969, c-service@ tup. tsinghua. edu. cn
B B K & 010-62772015.zhiliang(@tup. tsinghua. edu. cn

B % & BeEaR

b2 W 2EPmERE

F &, 175X245 E #. 22.75

K W 20114FE 2 A% 1R En 20114 2 BEB1 REIRY
21 #. 1~3000

. 49.00 5T

P S . 027798-01



About the Authors

Jack Dongarra holds a joint appointment as Distinguished Professor of Com-
puter Science in the Computer Science Department at the University of Ten-
nessee (UT) and as Distinguished Scientist in the Mathematical Sciences Section
at Oak Ridge National Laboratory (ORNL) under the UT/ORNL Science Al-
liance Program. He specializes in numerical algorithms in linear algebra, parallel
computing, use of advanced-computer architectures, programming methodology,
and tools for parallel computers. Other current research involves the develop-
ment, testing and documentation of high quality mathematical software. He was
involved in the design and implementation of the software packages EISPACK,
LINPACK, the BLAS, LAPACK, ScaLAPACK, the Templates project, netiib,
PVM, MPI, the National High-Performance Software Exchange, and NetSolve
and is currently involved in the design of algorithms and techniques for high
performance computer architectures. Other experience includes work as a com-
puter scientist and senior computer scientist in the Mathematics and Computer
Science Division at Argonne National Laboratory from 1973 to 1989, as a vis-
iting scientist with the Center for Supercomputing Research and Development
at the University of Illinois at Urbana during 1987, as a visiting scientist at
IBM’s T. J. Watson Research Center in 1981, as a consultant to Los Alamos
Scientific Laboratory in 1978, as a research assistant with the University of New
Mexico in 1978, and as a visiting scientist at Los Alamos Scientific Laboratory
in 1977. Dongarra received a Ph.D. in applied mathematics from the University
of New Mexico in 1980, an M.S. in computer science from the Illinois Institute
of Technology in 1973, and a B.S. in mathematics from Chicago State Univer-
sity in 1972. He has published numerous articles, papers, reports and technical
memoranda, and has given many presentations on his research interests and is
a Fellow of the American Association for the Advancement of Science (AAAS).
http://www.netlib.org/utk/people/JackDongarra/

Iain S. Duff is Group Leader of Numerical Analysis in the Department for
Computation and Information at the CCLRC Rutherford Appleton Laboratory
in Oxfordshire, England. He is also the Project Leader for the Parallel Algo-
rithms Group at CERFACS in Toulouse and is a Visiting Professor of mathe-
matics at the University of Strathclyde. After completing his D.Phil. at Oxford,
he was a Harkness Fellow in the United States, visiting Stony Brook and Stan-
ford. He then spent two years lecturing at the University of Newcastle upon
Tyne before joining the Harwell Laboratory, where he became Group Leader of

xi



xii About the Authors

Numerical Analysis in 1986. In 1990, the Group moved to the Atlas Centre at
the Rutherford Appleton Laboratory. He has had several extended visits to Ar-
gonne National Laboratory, the Australian National University, the University
of Colorado at Boulder, Stanford University, and the University of Ume3.

He is a life Fellow and an Honorary Secretary of the Institute of Mathematics
and its Applications and is chairman of the IMA Programme Committee. He is
Editor of the IMA Journal of Numerical Analysis and of the IMANA Newslet-
ter. He is a member of SIAM (USA), SMAI (France), and SBMAC (Brazil)
and is an IMA representative on the Steering Committee of CICIAM. He is Ed-
itor or Associate Editor of thirteen journals in numerical analysis or scientific
computation.

His main interests are in the solution of large sparse systems of equations,
more recently on high performance computing platforms. His Group at RAL
supports and develops the Harwell Subroutine Library. The Group at CER-
FACS is concerned with more general scientific computation and are involved
in many European Projects.
http://www.dci.clrc.ac.uk/Person.asp?I.8.Duff

Danny C. Sorensen is a professor in the Mathematical Sciences Department
of Rice University. His research interests are in numerical analysis and paral-
lel computation, with specialties in numerical linear algebra, use of advanced-
computer architectures, programming methodology and tools for parallel com-
puters, and numerical methods for nonlinear optimization. Sorensen was a
computer scientist and senior computer scientist in the Mathematics and Com-
puter Science Division at Argonne National Laboratory from 1980 to 1989. He
has also been a visiting professor at the Department of Operations Research at
Stanford University and the Department of Mathematics, University of Califor-
nia at San Diego and a visiting scientist with the Center for Supercomputing
Research and Development at the University of Illinois at Urbana.

Henk A. van der Vorst is a professor in numerical analysis in the Mathemat-
ical Department of Utrecht University in the Netherlands. His current research
interests include iterative solvers for linear systems, large sparse eigenproblems,
and the design of algorithms for parallel computers. Van der Vorst received
a Ph.D. in applied mathematics from the University of Utrecht in 1982 for a
thesis on the effect of preconditioning. Together with Meijerink, he proposed
in the mid-1970s the so-called ICCG method, a combination of CG with In-
complete Cholesky decomposition and they proved the existence of incomplete
LU decompositions for M-matrices. Furthermore, he introduced Bi-CGSTAB
(1992), GMRESR (together with Vuik, 1994), and the Jacobi-Davidson methods
(together with Sleijpen, 1996). For the paper on Jacobi-Davidson methods for
standard eigenproblems, he and Sleijpen received a SIAG-LA Award in 1997.
He authored and co-authored over a hundred publications on these and other
subjects in numerical linear algebra and on parallel linear algebra. These pub-
lications include two joint papers with Gene Golub on the State of the Art in
Iterative Methods. He also made a contribution to the SIAM book on tem-
plates for iterative methods for (sparse) linear systems. Van der Vorst was a
senior consultant at the Academic Computing Centre Utrecht for more than 12



About the Authors xiii

years, until fall 1984. From 1984 to 1990 he was a professor in numerical linear
algebra and supercomputing in the Department of Technical Mathematics and
Computer Science of Delft University.
http://www.math.ruu.nl/people/vorst



Preface

The purpose of this book is to unify and document in one place many of the
techniques and much of the current understanding about solving systems of lin-
ear equations on vector and parallel computers. This book is not a textbook,
but it is meant to provide a fast entrance to the world of vector and parallel
processing for these linear algebra applications. We intend this book to be used
by three groups of readers: graduate students, researchers working in compu-
tational science, and numerical analysts. As such, we hope this book can serve
both as a reference and as a supplement to a teaching text on aspects of scientific
computation.

The book is divided into five major parts: (1) introduction to terms and
concepts, including an overview of the state of the art for high-performance
computers and a discussion of performance evaluation (Chapters 1-4); (2) di-
rect solution of dense matrix problems (Chapter 5); (3) direct solution of sparse
systems of equations (Chapter 6); (4) iterative solution of sparse systems of
equations (Chapters 7-9); and (5) iterative solution of sparse eigenvalue prob-
lems (Chapters 10-11). Any book that attempts to cover these topics must
necessarily be somewhat out of date before it appears, because the area is in a
state of flux. We have purposely avoided highly detailed descriptions of popu-
lar machines and have tried instead to focus on concepts as much as possible;
nevertheless, to make the description more concrete, we do point to specific
computers.

Rather than include a floppy disk containing the software described in the
book, we have included a pointer to netlib. The problem with floppies in books is
that they are never around when one needs them, and the software may undergo
changes to correct problems or incorporate new ideas. The software included in
netlib is in the public domain and can be used freely. With netlib we hope to
have up-to-date software available at all times. A directory in netlib called ddsv
contains the software (see http://www.netlib.org/ddsv/), and Appendix A
of this book discusses what is available and how to make a request from netlib.

This book is a major revision to the book entitled Solving Linear Systems
on Vector and Shared Memory Computers, published by SIAM in 1990. The
book updates the material focusing on vector and parallel computing for linear
algebra and includes new material on the eigenvalue problem.

We express appreciation to all those who helped in the preparation of this
work, in particular to Gail Pieper for her tireless efforts in proofreading drafts

XV



xvi Preface

and improving the quality of the presentation and to Ed Anderson, Michael
Botchev, Jeremy Du Croz, Victor Eijkhout, Robert Funderlic, Antoine Petitet,
and Charlie Van Loan for their help in proofreading and their many sugges-
tions to improve the readability. Much of the dense linear algebra parts would
not be possible without the efforts and support of the developers of LAPACK,
ScalLAPACK, and ARPACK.

Jack J. Dongarra

Iain S. Duff

Danny C. Sorensen
Henk A. ven der Vorst



Introduction

The recent availability of advanced-architecture computers has had a significant
impact on all spheres of scientific computation including algorithm research
and software development in numerical linear algebra. This book discusses
some of the major elements of these new computers and indicates some recent
developments in sparse and full linear algebra that are designed to exploit these
elements.

The three main novel aspects of these advanced computers are the use of
vectorization, parallelism, and super-scalar architectures, although how these
are accommodated varies greatly between architectures. The first commercially
available vector machine to have a significant impact on scientific computing was
the CRAY-1, the first machine being delivered to Los Alamos in 1976. Thus,
the use of vectorization is by now quite mature, and a good understanding of
this architectural feature and general guidelines for its exploitation are now
well established. However, the first commercially viable parallel machine was
the Alliant in 1985, and more highly parallel machines did not appear on the
marketplace until 1988. Thus, there remains a relative lack of definition and ma-
turity in this area, although some guidelines and standards on the exploitation
of parallelism are beginning to emerge. )

Our background is in scientific computing rather than computer scientists;
as such, one of our intentions in writing this book is to provide the comput-
ing infrastructure and necessary definitions to guide the computational scientist
and, at the very least, to equip him or her with enough understanding to be
able to read computer documentation and appreciate the influence of some of
the major aspects of novel computer design. The majority of this basic material
is covered in Chapter 1, although we address further aspects related to imple-
mentation and performance in Chapters 3 and 4. In such a volatile marketplace
it is not sensible to concentrate too heavily on any specific architecture or any
particular manufacturer, but we feel it is useful to illustrate our general remarks
by reference to some currently existing machines. This we do in Chapter 2, as
well as in Chapter 4 where we present some performance profiles for current
machines.

Linear algebra, in particular the solution of linear systems of equations and
eigenvalue problems, lies at the heart of most calculations in scientific comput-
ing. We thus concentrate on this area in this book, examining algorithms and
software for dense coefficient matrices in Chapter 5 and for sparse direct sys-

xvii



xviii Introduction

tems in Chapter 6; iterative methods of solution are covered in Chapters 7-9,
and Chapters 10 and 11 deal with large sparse eigenvlaue problems.

Within scientific computation, parallelism can be exploited at several levels.
At the highest level a problem may be subdivided even before its discretiza-
tion into a linear (or nonlinear) system. This technique, typified by domain
decomposition, usually results in large parallel tasks ideal for mapping onto a
distributed-memory architecture. In keeping with our decision to minimize ma-
chine description, we refer only briefly to this form of algorithmic parallelism in
the following, concentrating instead on the solution of the discretized subprob-
lems. Even here, more than one level of parallelism can exist—for example, if
the discretized problem is sparse. We discuss sparsity exploitation in Chapters
6 and 7.

Our main algorithmic paradigm for exploiting both vectorization and paral-
lelism in the sparse and the full case is the use of block algorithms, particularly
in conjunction with highly tuned kernels for effecting matrix-vector and matrix-
matrix operations. We discuss the design of these building blocks in Section
5.1 and their use in the solution of dense equations in the rest of Chapter 5.
We discuss their use in the solution of sparse systems in Chapter 6, particularly
Sections 6.4 and 6.5.

As we said in the preface, this book is intended to serve as a reference and
as a supplementary teaching text for graduate students, researchers working
in computational science, and numerical analysts. At the very least, the book
should provide background, definitions, and basic techniques so that researchers
can understand and exploit the new generation of computers with greater facility
and efficiency.



Contents

About the Authors xi
Preface xv
Introduction xvii
1 High-Performance Computing 1
1.1 Trends in Computer Design . . . . .. ... ... ......... 1
1.2 Traditional Computers and Their Limitations . . . . . ... ... 2
1.3 Parallelism within a Single Processor . . . . . .. ... ...... 3
1.3.1 Multiple Functional Units . . . . .. ... ... ... ... 3

132 Pipelining . . .. ... ... .. ... . ... 3

133 Overlapping . . . . . . . .. ... . e 4

134 RISC . ... . e e 5

1.3.5 VLIW . . . .. e 6

1.3.6 Vector Instructions . . . . . ... ... ........... 7

1.3.7 Chaining . ... ... ... ... . ... . .. 7

1.3.8 Memory-to-Memory and Register-to-Register Organizations 8

139 RegisterSet . .. ... ... ... .. ... ... ...... 9

1.3.10 Stripmining . . . . ... ... ... Lo oo 9

1.3.11 Reconfigurable Vector Registers . . . . . . ... ... ... 10

1.3.12 Memory Organization . .. ... .............. 10

1.4 Data Organization . .. ... ... ... .. ... ......... 11
141 MainMemory. . ... ... ... ... .. ......... 12

142 Cache . .. ... ... ... ... 14

143 LocalMemory . . ...................... 15

1.5 Memory Management . ... .................... 15
1.6 Parallelism through Multiple Pipes or Multiple Processors . . . . 18
1.7 MessagePassing . ... ... ... .. ... ..... . ...... 19
1.8 Virtual Shared Memory . . . . ... ... ... .......... 21
1.81 Routing . . ... ... ... . ... ... ... 21

1.9 Interconnection Topology . ... ... ............... 22
191 Crossbar Switch . .. ... ................. 23

1.9.2 TimesharedBus ... .................... 23



vi

193 Ring Connection . . ... ..............
1.94 Mesh Connection . . . . . ... ...........
195 Hypercube . ... ... ... .. ... .. .....
1.9.6 Multi-staged Network . . ... ... ........
1.10 Programming Techniques . ... ... ... ... .....
1.11 Trends: Network-Based Computing . ... ... ... ..

Overview of Current High-Performance Computers

2.1 Supercomputers. . . .. ... ... ..., ... .. ....
2.2 RISC-Based Processors . . . . . .. . .. v .u..
2.3 Parallel Processors . . . ... ... ... ... ......

Implementation Details and Overhead

3.1 Parallel Decomposition and Data Dependency Graphs . .
3.2 Synchronization . . . .. . ... ... ... ... ...,
33 Load Balancing . . ... ...................
3.4 Recurrence . ... ... ... .. ... ... ...
3.5 Indirect Addressing . . . . . . . ... .. ... ... ...,
36 MessagePassing . ... ....... ... .........
3.6.1 Performance Prediction .. .............
3.6.2 Message-Passing Standards . . ... ...... ..
363 Routing . . ...... ... ... . ... ......

Performance: Analysis, Modeling, and Measurements

41 AmdahlsLaw. .. ... ... . ... ... ........
4.1.1 Simple Case of Amdahl’'s Law . . . . ... ... ..
4.1.2 General Form of Amdahl’'sLaw . . . . ... .. ..

4.2 Vector Speed and Vector Length . . . . .. ... ... ..

4.3 Amdahl’s Law—Parallel Processing . . . .. ... ... ..
4.3.1 ASimpleModel ...................
4.3.2 Gustafson’sModel . . ... .. ... ... .....

4.4 Examples of (ro, ny/3)-values for Various Computers . . .
441 CRAY J90 and CRAY T90 (One Processor) . . . .
4.4.2 General Observations . .. ... ..........

4.5 LINPACK Benchmark . ... ... .............
4.5.1 Description of the Benchmark . . . . ... ... ..
452 Callstothe BLAS . .. ... ............

Building Blocks in Linear Algebra

5.1 Basic Linear Algebra Subprograms . . ... ........
511 Level 1IBLAS . . ... ... ... ..........
512 Level2BLAS . . ... ... .. ... ... .....
513 Level 3BLAS . . . ... ... ... ... .......

52 Levelsof Parallelism .. . ... .. .............
52.1 Vector Computers . . ... .............

Contents



Contents vii

5.2.2 Parallel Processors with Shared Memory . . . . . . .. .. 78
5.2.3 Parallel-Vector Computers . . . . . . . . . . ... .. ... 78
524 Clusters Computing . . . . . . . ... . ... ... 78
5.3 Basic Factorizations of Linear Algebra . . . . . . . ... ... .. 79
5.3.1 Point Algorithm: Gaussian Elimination with Partial Piv-
OtINE . . . . . o e e e 79
5.3.2 Special Matrices . . .. ... ... ... ... 80
5.4 Blocked Algorithms: Matrix-Vector and Matrix-Matrix Versions 83
5.4.1 Right-Looking Algorithm . . ... ... ... ....... 85
5.4.2 Left-Looking Algorithm . . . ... .. ... ........ 86
54.3 Crout Algorithm . . .. ... ... ... .. ..... ... 87
5.4.4 Typical Performance of Blocked LU Decomposition . .. 88
5.4.5 Blocked Symmetric Indefinite Factorization . . . .. . .. 89
5.4.6 Typical Performance of Blocked Symmetric Indefinite Fac-
torization . . . . . ... ... Lo o 91
5.5 Linear Least Squares . . . . . . . .. ... ... ... ... . 92
5.5.1 Householder Method . . . . . . .. .. ... ... ..... 93
5.5.2 Blocked Householder Method . . . . . . .. ... .. ... 9
5.5.3 Typical Performance of the Blocked Householder Factor-
ization . . . . . .. L 95
5.6 Organization of the Modules . . . . ... ... .......... 95
5.6.1 Matrix-Vector Product . . . . . .. ... .. ... ..... 96
56.2 Matrix-Matrix Product . . . ... ... .. ... ..... 97
5.6.3 Typical Performance for Parallel Processing . . . . . . . . 98
56.4 Benefits . . . . . . .. ... 98
57 LAPACK . . . . . . . e e 99
5.8 ScaLAPACK . . . .. . ... ... e 100
5.8.1 The Basic Linear Algebra Communication Subprograms
(BLACS) . .. . .« 101
58.2 PBLAS . .. . . . ... 102
5.8.3 ScaLAPACK Sample Code . ... ... .......... 103
6 Direct Solution of Sparse Linear Systems 107
6.1 Introduction to Direct Methods for Sparse Linear Systems . . . . 111
6.1.1 Four Approaches . . . . . . e e e e 111
6.1.2 Description of Sparse Data Structure . . . . . . .. .. .. 112
6.1.3 Manipulation of Sparse Data Structures . . . . . .. . .. 113
6.2 General Sparse Matrix Methods . . . . . ... ... .. ...... 115
6.2.1 Fill-in and Sparsity Ordering . . . . . . .. ... ... .. 115
6.2.2 Indirect Addressing—Its Effect and How to Avoid It . . . 118
6.2.3 Comparison with Dense Codes . . . . . . . ... ... .. 120
6.2.4 Other Approaches . . . .. . ... ... .......... 121
6.3 Methods for Symmetric Matrices and Band Systems . . . .. .. 123
6.3.1 The Clique Concept in Gaussian Elimination . . . . . .. 124
6.3.2 Further Comments on Ordering Schemes. . . . . . . . .. 126
6.4 Frontal Methods . . .. . ... ... ... .. ... ........ 126



viil

Contents

6.4.1 Frontal Methods—Link to Band Methods and Numerical
Pivoting . . . ... ... o o oo 128
6.4.2 Vector Performance .. ... ................ 129
6.4.3 Parallel Implementation of Frontal Schemes . . . . . . .. 130
6.5 Multifrontal Methods . . . . . ... ... ............. 131
6.5.1 Performance on Vector Machines . . . . .. ... ... .. 135
6.5.2 Performance on RISC Machines. . . . ... ... ... .. 136
6.5.3 Performance on Parallel Machines . . ... ... ... .. 137
6.5.4 Exploitation of Structure . . ... ... .. ... ..... 142
6.5.5 Unsymmetric Multifrontal Methods . . .. ... ... .. 143
6.6 Other Approaches for Exploitation of Parallelism . . .. ... .. 144
6.7 Software . . . . . ... .. ... e e 145
6.8 BriefSummary . ... .. ... ... ... e 147
Krylov Subspaces: Projection 149
71 Notation . . . . . ... .. ... . ... 149
7.2 Basic Iteration Methods: Richardson Iteration, Power Method . 150
7.3 Orthogonal Basis (Arnoldi, Lanczos) . .. ... .......... 153
Iterative Methods for Linear Systems 157
8.1 Krylov Subspace Solution Methods: Basic Principles . . . . . . . 157
8.1.1 The Ritz-Galerkin Approach: FOMand CG. ... .. .. 158
8.1.2 The Minimum Residual Approach: GMRES and MINRES 159
8.1.3 The Petrov-Galerkin Approach: Bi-CG and QMR . . .. 159
8.1.4 The Minimum Error Approach: SYMMLQ and GMERR 161
8.2 Iterative Methodsin More Detail . . . . . ... . ... ...... 162
821 TheCGMethod . ... ... ................ 163
8.2.2 Parallelism in the CG Method: General Aspects . . . .. 165
8.2.3 Parallelism in the CG Method: Communication Overhead 166
824 MINRES ... ... . . . e e 168
825 Least SquaresCG .. ... .. .. ... . ... ... 170
826 GMRESand GMRES(m) .. ................ 172
8.2.7 GMRES with Variable Preconditioning ... ... .. .. 175
828 Bi-CGandQMR .. .. ... ... ... ... ....... 179
829 CGS ... .. . 182
8.2.10 Bi-CGSTAB . . . . ... .. . ... ... . 184
8.2.11 Bi-CGSTAB(¢) and Variants . .. ... .......... 186
83 OtherlIssues. ... .. ... ... ... . ... .. ... ..c... 189
8.4 How to Test Iterative Methods . . . ... ... ... ....... 191
Preconditioning and Parallel Preconditioning 195
9.1 Preconditioning and Paralle] Preconditioning . . .. ... .. .. 195
9.2 The Purpose of Preconditioning . . . . .. ... .......... 195
9.3 Incomplete LU Decompositions . . . . . . ... ... ....... 199
9.3.1 Efficient Implementations of ILU(0) Preconditioning . . . 203

9.3.2 General Incomplete Decompositions . . ........ .. 204



Contents

9.3.3 Variants of ILU Preconditioners. . . .. ... .......
9.3.4 Some General Comments on ILU . . . . . ... ......
9.4 Some Other Forms of Preconditioning . .. ............
9.4.1 Sparse Approximate Inverse (SPAI) . .. ... ......
9.4.2 Polynomial Preconditioning . . . . ... ... .. .....
9.4.3 Preconditioning by Blocks or Domains . . . . . ... ...
9.4.4 Element by Element Preconditioners . . . . ... ... ..

9.5 Vector and Parallel Implementation of Preconditioners .
9.5.1 Partial Vectorization . . . . . ... ... ... ..

9.5.2 Reordering the Unknowns . . . . ... ...........
9.5.3 Changing the Order of Computation . . . ... ... ...

9.5.4 Some Other Vectorizable Preconditioners . . . .
9.5.5 Parallel Aspects of Reorderings . . . . . ... ..

9.5.6 Experiences with Parallelism . ...............

0 Linear Eigenvalue Problems Az = Az
10.1 Theoretical Background and Notation . .. ... ...

10.2 Single-Vector Methods . . . . ... ... ... ..........

103 The @R Algorithm . . .. .. ... ...........
10.4 Subspace Projection Methods . . . ... ... ... ..
10.5 The Arnoldi Factorization . .. ... ..........
10.6 Restarting the Arnoldi Process . .. .. ... P
10.6.1  Explicit Restarting . ... ... ........
10.7 Implicit Restarting . . . . ... .. ... ........
10.8 Lanczos’Method .. ... ... ... ..........
10.9 Harmonic Ritz Values and Vectors . ... .. ... ..
10.10 Other Subspace Iteration Methods . . . ... ... ..
10.11 Davidson’s Method . . . . ... ... ... .. .....
10.12 The Jacobi-Davidson Iteration Method . . . . . . . ..
10121 JDQR. ... ... ...
10.13 Eigenvalue Software: ARPACK, P ARPACK. . . . ..
10.13.1 Reverse Communication Interface .. ... ..
10.13.2 Parallelizing ARPACK . .. ..........
10.13.3 Data Distribution of the Arnoldi Factorization

.....

.....

10.14
10.15
10.16
10.17

Message Passing . . . . ... ... ... ... ..........
Parallel Performance . . . ... ... .. ... ..........
Availability . . . . .. ... ..
Summary . ... ... ... ... ... ... .. e e e e

11 The Generalized Eigenproblem

11.1 Arnoldi/Lanczos with Shift-Invert . ... ... ... ..
11.2 Alternatives to Arnoldi/Lanczos with Shift-Invert . . . .
11.3 The Jacobi-Davidson @Z Algorithm . .. ... ... ..
11.4 The Jacobi-Davidson @Z Method: Restart and Deflation
11.5 Parallel Aspects. . . . . ... ... ... .........

207
208
209
209
211
211
213
215
215
217
219
222
225
227

231
231
232
234
235
237
239
239
240
243
245
246
248
249
252
253
254
255
256
259
260
261
261

263
263
265
266

. 268



A .Acquiring Mathematical Software
Al methb. . . . .. .. ..

B Glossary

C Level 1, 2, and 3 BLAS Quick Reference

D Operation Counts for Various BLAS and Decompositions
Bibliography

Index

Contents

273

277
291
295
301

329



Chapter 1

High-Performance
Computing

In this chapter we review some of the basic features of traditional and ad-
vanced computers. The review is not intended to be a complete discussion of
the architecture of any particular machine or a detailed analysis of computer ar-
chitectures. Rather, our focus is on certain features that are especially relevant
to the implementation of linear algebra algorithms.

1.1 Trends in Computer Design

In the past decade, the world has experienced one of the most exciting peri-
ods in computer development. Computer performance improvements have been
dramatic—a trend that promises to continue for the next several years. One
reason for the improved performance is the rapid advance in microprocessor
technology. Microprocessors have become smaller, denser, and more powerful.
Indeed, if cars had made equal progress, you could buy a car for a few dollars,
drive it across the country in a few minutes, and “park” the car in your pocket!
The result is that microprocessor-based supercomputing is rapidly becoming
the technology of preference in attacking some of the most important problems
of science and engineering. To exploit microprocessor technology, vendors have
developed highly parallel computers.

Highly parallel systems offer the enormous computational power needed for
solving some of our most challenging computational problems such as simulat-
ing the climate. Unfortunately, software development has not kept pace with
hardware advances. New programming paradigms, languages, scheduling and
partitioning techniques, and algorithms are needed to fully exploit the power of
these highly parallel machines.

A major new trend for scientific problem solving is distributed computing.
In distributed computing, computers connected by a network are used collec-
tively to solve a single large problem. Many scientists are discovering that their

1



