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Preface

This text sprung from a course we have taughtjointly over
the last 8 years at Rice University to students from Rice
and Baylor College of Medicine. The goal of our course,
and this text, is to develop mathematical methods that are
most relevant to neuroscience, in a fashion that deepens
the student’s knowledge of each.

Regarding the mathematics, this means working in
concrete incremental steps that enable the student to
parse and extend the MATLAB code provided for each of
the 232 computational examples and exercises. Regard-
ing the neuroscience, this means establishing basic mod-
els of stimuli and molecular, cellular, and circuit level
phenomena prior to their systematic elaboration and inte-
gration. The degree to which we have succeeded in this
goal is, in large measure, due to the perspicacity of our
many devoted students.

We have also benefited from Houston’s rich neuro-
science climate and happily acknowledge the leader-
ship of Jack Byrne, Mike Friedlander, Marty Golubitsky,

and Kathy Matthews in promoting dialog between
mathematics and neuroscience. This dialog has been sus-
tained by our close collaboration with fellow members
of the Gulf Coast Consortium for Theoretical and Com-
putational Neuroscience. In particular, we thank Mark
Embree, Kreso Josic, Weiji Ma, Peter Saggau, and Harel
Shouval for detailed feedback on a number of our chap-
ters. It is also a pleasure to acknowledge comments
received from Maurice Chacron, Stephen Coombes, Greg
DeAngelis, Brent Doiron, Hans van Hateren, Leonard
Maler, Victor Matveev, and Ralf Wessel and his group.

Our deepest thanks go to our wives, Sibylle and Laura,
for nurturing the early stages of our work and for accept-
ing our near single mindedness during our final year of
writing.

We also thank Colin Cox for an early animation that
catalyzed a good fraction of our course and Simon Cox
for coordinating our code and figures at a time when they
appeared to be taking on a life of their own.
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Faced with the seemingly limitless qualities of the brain, Neuroscience has eschewed provincialism and instead
pursued a broad tack that openly draws on insights from biology, physics, chemistry, psychology, and mathematics in
its construction of technologies and theories with which to probe and understand the brain. These technologies and
theories, in turn, continue to attract scientists and mathematicians to questions of Neuroscience. As a result, we may
trace over one hundred years of fruitful interplay between Neuroscience and mathematics. This text aims to prepare
the advanced undergraduate or beginning graduate student to take an active part in this dialogue via the application
of existing, or the creation of new, mathematics in the interest of a deeper understanding of the brain. Requiring no
more than one year of Calculus, and no prior exposure to Neuroscience, we prepare the student by

1. introducing mathematical and computational tools in precisely the contexts that first established their importance
for Neuroscience and

2. developing these tools in concrete incremental steps within a common computational environment.

As such, the text may also serve to introduce Neuroscience to readers with a mathematical and/or computational
background.

Regarding (1), we introduce ordinary differential equations via the work of Hodgkin and Huxley (1952) on action
potentials in the squid giant axon, partial differential equations through the work of Rall on cable theory (see Segev et al.
(1994)), probability theory following the analysis of Fatt and Katz (1952) on synaptic transmission, dynamical systems
theory in the context of Fitzhugh'’s (1955) investigation of action potential threshold, and linear algebra in the context
of the work of Hodgkin and Huxley (1952) on subthreshold oscillations and the compartmental modeling of Hines
(1984) on dendritic trees. In addition, we apply Fourier transforms to describe neuronal receptive fields following
Enroth-Cugell and Robson’s (1966) work on retinal ganglion cells and its subsequent extension to Hubel and Wiesel's
(1962) characterization of cat cortical neurons. We also introduce and motivate statistical decision methods starting
with the historical photon detection experiments of Hecht et al. (1942).

Regarding (2), we develop, test, and integrate models of channels, receptors, membranes, cells, circuits and sensory
stimuli by working from the simple to the complex within the MATLAB computing environment. Assuming no prior
exposure to MATLAB, we develop and implement numerical methods for solving algebraic and differential equations,
for computing Fourier transforms, and for generating and analyzing random signals. Through an associated web site
we provide the student with MATLAB code for 144 computational figures in the text and we provide the instructor with
MATLAB code for 98 computational exercises. The exercises range from routine reinforcement of concepts developed

ics for N ientists. DOI: 10. 0-12-374882-9.00001-0
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2 1. INTRODUCTION

in the text to significant extensions that guide the reader to the research literature. Our reference to exercises both in
the text and across the exercises serve to establish them as an integral component of this book.

Concerning the mathematical models considered in the text, we cite the realization of Schrodinger (1961) that “we
cannot ask for more than just adequate pictures capable of synthesizing in a comprehensible way all observed facts
and giving a reasonable expectation on new ones we are out for.” Furthermore, lest “adequate” serve as an invitation
to loose or vague modeling, Schrodinger warns that “without an absolutely precise model, thinking itself becomes
imprecise, and the consequences derived from the model become ambiguous.”

As we enter the 21% century, one of the biggest challenges facing Neuroscience is to integrate knowledge and to
craft theories that span multiple scales, both in space from the nanometer neighborhood of an ion channel to the
meter that action potentials must travel down the sciatic nerve, and in time from the fraction of a millisecond it takes
to release neurotransmitter to the hours it takes to prune or grow synaptic contacts between cells. We hope that this
text, by providing an integrated treatment of experimental and mathematical tools within a single computational
framework, will prepare our readers to meet this challenge.

1.1 HOW TO USE THIS BOOK

The book is largely self-contained and as such is suited for both self-study and reference use. The chapters need not
be read in numerical order. To facilitate a selection for reading, we have sketched in Figure 1.1 the main dependencies
between the chapters. The four core chapters that underlie much of the book are Chapters 2—4 and 11. For the reader
with limited prior training in mathematics it is in these chapters that we develop, by hand calculation, MATLAB
simulation and a thorough suite of exercises, the mathematical maturity required to appreciate the chapters to come.
Many of the basic chapters also contain more advanced subsections, indicated by an asterisk, *, which can be skipped
on a first reading. Detailed solutions are provided for most exercises, either at the end of the book or through the
associated web site. We mark with a dagger, ¥, each exercise whose solution is not included in this text.

Over the past eight years, we have used a subset of the book’s material for a one semester introductory course
on Mathematical Neuroscience to an audience comprised of Science and Engineering undergraduate and graduate
students from Rice University and Neuroscience graduate students from Baylor College of Medicine. We first cover
Chapters 2-5, which set and solve the Hodgkin-Huxley equations for isopotential cells and, via the eigenvector
expansion of the cell’s subthreshold response, introduce the key concepts of linear algebra needed to tackle the
multicompartment cell in Chapters 6 and 8-9. We then open Chapter 11, introduce probabilistic methods and apply
them to synaptic transmission, in Chapter 12, and spike train variability, in Chapter 15. We conclude this overview
of single neuron properties by covering Chapter 10 on reduced single neuron models. We transition to Systems
Neuroscience via the Fourier transform of Chapter 7 and its application to visual neurons in Chapters 20 and 21.
Finally, we connect neural response to behavior via the material of Chapters 24 and 25. An alternative possibility is to
conclude with Chapters 22 and 23, after an informal introduction to stochastic processes, and power and cross spectra
in Chapters 16 and 18.

We have also used the following chapters for advanced courses: 13, 14, 16-19, and 26. Chapter 13 provides a
comprehensive coverage of calcium dynamics within single neurons at an advanced level. Similarly, Chapter 14
introduces the singular value decomposition, a mathematical tool that has important applications both in spike
sorting and in model reduction. Chapters 16 and 18 introduce stochastic processes and methods of spectral analysis.
These results can be applied at the microscopic level to describe single channel gating properties, Chapter 17, and at
the macroscopic level to describe the statistical properties of natural scenes and their impact on visual processing,
Chapter 19. Finally the chapters on population codes and networks, Chapters 26 and 27, address the coding and
dynamical properties of neuronal ensembles.

To ease the reading of the text, we have relegated all references to the Summary and Sources section located at the
end of each chapter. These reference lists are offered as pointers to the literature and are not intended to be exhaustive.

1.2 BRAIN FACTS BRIEF

The brain is the central component of the nervous system and is incredibly varied across animals. In vertebrates, it
is composed of three main subdivisions: the forebrain, the midbrain, and the hindbrain. In mammals and particularly
in humans, the cerebral cortex of the forebrain is highly expanded. The human brain is thought to contain on the
order of 100 billion (10') nerve cells, or neurons. Each neuron “typically” receives 10,000 inputs (synapses, §2.1)
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1.2 BRAIN FACTS BRIEF 3

from other neurons, but this number varies widely across neuron types. For example: granule cells of the cerebellum,
the most abundant neurons in the brain, receive on average four inputs while Purkinje cells, the output neurons of
the cerebellar cortex, receive on the order of 100,000. In the mouse cerebral cortex, the number of neurons per cubic
millimeter has been estimated at 10°, while there are approximately 7 x 10® synapses and 4 km of cable (axons, §2.1)
in the same volume. Brain size (weight) typically scales with body size, thus the human brain is far from the largest.
At another extreme, the brain of the honey bee is estimated to contain less than a million (10%) neurons within a
single cubic millimeter. Yet the honey bee can learn a variety of complex tasks, not unlike those learned by a macaque
monkey for instance. Although it is often difficult to draw comparisons across widely different species, the basic
principles underlying information processing as they are discussed in this book appear to be universal, in spite of
obvious differences in implementation. The electrical properties of cells (Chapter 2), the generation and propagation
of signals along axons (Chapters 4 and 9), and the detection of visual motion (Chapters 21 and 25) or population codes
(Chapter 26), for instance, are observed to follow very similar principles across very distantly related species.

Information about the environment reaches the brain through five common senses: vision, touch, hearing, smell,
and taste. In addition, some animals are able to sense electric fields through specialized electroreceptors. These include
many species of fish and monotremes (egg-laying mammals) like the platypus. Most sensory information is gathered
from the environment passively, but some species are able to emit signals and register their perturbation by the
environment and thus possess active sensory systems. This includes bats that emit sounds at specific frequencies and
hear the echoes bouncing off objects in the environment, a phenomenon called echolocation. In addition some species
of fish, termed weakly electric, possess an electric organ allowing them to generate an electric field around their body
and sense its distortion by the environment, a phenomenon called electrolocation.

Ultimately, the brain controls the locomotor output of the organism. This is typically a complex process, involving
both commands issued to the muscles to execute movements, feedback from sensors reporting the actual state of the
musculature and skeletal elements, and inputs from the senses to monitor progress towards a goal. So efficient is this
process that even the tiny brain of a fly is, for instance, able to process information sufficiently fast to allow for highly
acrobatic flight behaviors, executed in less than 100 ms from sensory transduction to motor output.

To study the brain, different biological systems have proven useful for different purposes. For example, slices of the
rat hippocampus, a structure involved in learning and memory as well as navigation, are particularly adequate for
electrophysiological recordings of pyramidal neurons and a detailed characterization of their subcellular properties,
because their cell bodies are tightly packed in a layer that is easy to visualize. The fruit fly Drosophila melanogaster and
the worm Caenorhabditis elegans (whose nervous system comprises exactly 302 neurons) are good models to investigate
the relation between simple behaviors and genetics, as their genomes are sequenced and many tools are available to
selectively switch on and off genes in specific brain structures or neurons. One approach that has been particularly
successful to study information processing in the brain is “neuro-ethological,” based on the study of natural behaviors
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FIGURE 1.1 Chapter dependencies. Each arrow points to a chapter that depends significantly on the content of the current chapter. The asterisk

is used to denote chapters that cover advanced material.
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4 1. INTRODUCTION

(ethology) in relation to the brain structures involved in their execution. Besides the already mentioned weakly electric
fish and bats, classical examples, among many others, include song learning in zebrafinches, the neural control of
flight in flies, sound localization in barn owls, and escape behaviors in a variety of species, such as locust, goldfish,
or flies.

1.3 MATHEMATICAL PRELIMINARIES

MATLAB. Native MATLAB functions are in typewriter font, e.g., svd. Our contributed code, available on the book’s
web site, has a trailing .m, e.g., bepswl.m.

Numbers. The counting numbers, {0,1,2,...}, are denoted by N, while the reals are denoted by R and the complex
numbers by C. Each complex number, z € C, may be decomposed into its real and imaginary components. We will write

z=x+iy, where x=M(z), y=3(z), and i=+v-1.

Here x and y are each real and = signifies that one side is defined by the other. We denote the complex conjugate and

magnitude of z by
Z*=x—iy and |z|=\/x2+y2,

respectively.
Sets. Sets are delimited by curly brackets, {}. For example the set of odd numbers between 4 and 10 is {5,7,9}.

Intervals. Fora,beR with a <b the open interval (a,b) is the set of numbers x such that a < x < b. The closed interval
[a,b] is the set of numbers x such that a <x <b. The semiclosed (or semiopen) intervals [a,b) and (a,b] are the set of
numbers x such thata <x <b and a < x <b, respectively.

Vectors and matrices. Given n real or complex numbers, x1,x2,...,x,, we denote their arrangement into a vector, or
column, via bold lower case letters,

x=| . | (1.1)

The collections of all real and complex vectors with n components are denoted R" and C", respectively. The transpose
of a vector, x, is the row,

-

X' =(x1x2 -+ Xp),

and the conjugate transpose of a vector, ze C", is the row
H

% o F ~
Z =(..] Zy e .;,,).

We next define the inner, or scalar, or “dot,” product for x and y in C",

n
He - %>
xly= E XY,
j=1

and note that as

n
2l'z=3 |zi? =0
i=1
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