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Series Preface

Mathematics is playing an ever more important role in the physical and
biological sciences, provoking a blurring of boundaries between scientific
disciplines and a resurgence of interest in the modern as well as the classical
techniques of applied mathematics. This renewal of interest, both in re-
search and teaching, has led to the establishment of the series Texts in
Applied Mathematics (TAM).

The development of new courses is a natural consequence of a high level
of excitement on the research frontier as newer techniques, such as numeri-
cal and symbolic computer systems, dynamical systems, and chaos, mix
with and reinforce the traditional methods of applied mathematics. Thus,
the purpose of this textbook series is to meet the current and future needs
of these advances and to encourage the teaching of new courses.

TAM will publish textbooks suitable for use in advanced undergraduate
and beginning graduate courses, and will complement the Applied Mathe-
matical Sciences (AMS) series, which will focus on advanced textbooks and
research-level monographs.

Pasadena, California J.E. Marsden
Providence, Rhode Island L. Sirovich
College Park, Maryland S.S. Antman



Pretface

Partial differential equations are fundamental to the modeling of natural
phenomena; they arise in every field of science. Consequently, the desire to
understand the solutions of these equations has always had a prominent
place in the efforts of mathematicians; it has inspired such diverse fields as
complex function theory, functional analysis and algebraic topology. Like
algebra, topology and rational mechanics, partial differential equations are
a core area of mathematics.

Unfortunately, in the standard graduate curriculum, the subject is sel-
dom taught with the same thoroughness as, say, algebra or integration
theory. The present book is aimed at rectifying this situation. The goal of
this course was to provide the background which is necessary to initiate
work on a Ph.D. thesis in PDEs. The level of the book is aimed at be-
ginning graduate students. Prerequisites include a truly advanced calculus
course and basic complex variables. Lebesgue integration is needed only in
Chapter 10, and the necessary tools from functional analysis are developed
within the course.

The book can be used to teach a variety of different courses. Here at Vir-
ginia Tech, we have used it to teach a four-semester sequence, but (more
often) for shorter courses covering specific topics. Students with some un-
dergraduate exposure to PDEs can probably skip Chapter 1. Chapters 2—4
are essentially independent of the rest and can be omitted or postponed if
the goal is to learn functional analytic methods as quickly as possible. Only
the basic definitions at the beginning of Chapter 2, the Weierstrafl approxi-
mation theorem and the Arzela-Ascoli theorem are necessary for subsequent
chapters. Chapters 10, 11 and 12 are independent of each other (except that
Chapter 12 uses some definitions from the beginning of Chapter 11) and
can be covered in any order desired.

We would like to thank the many friends and colleagues who gave us sug-
gestions, advice and support. In particular, we wish to thank Pavel Bochev,
Guowei Huang, Wei Huang, Addison Jump, Kyehong Kang, Michael Keane,
Hong-Chul Kim, Mark Mundt and Ken Mulzet for their help. Special
thanks is due to Bill Hrusa, who read a good deal of the manuscript, some of
it with great care and made a number of helpful suggestions for corrections
and improvements.



vi
Notes on the second edition

We would like to thank the many readers of the first cdition who provided
comments and criticism. In writing the second edition we have, of course,
taken the opportunity to make many corrections and small additions. We
have also made the following more substantial changes.

» We have added new problems and tried to arrange the problems in
each section with the easiest problems first.

e We have added several new examples in the sections on distributions
and elliptic systems.

e The material on Sobolev spaces has been rearranged, expanded, and
placed in a separate chapter. Basic definitions, examples, and theo-
rems appear at the beginning while technical lemmas are put off until
the end. New examples and problems have been added.

® We have added a new section on nonlinear variational problems with
” Young—measure” solutions.

e We have added an expanded reference section.
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1

Introduction

This book is intended to introduce its readers to the mathematical theory
of partial differential equations. But to suggest that there is a “theory”
of partial differential equations (in the same sense that there is a theory
of ordinary differential equations or a theory of functions of a single com-
plex variable) is misleading. PDEs is a much larger subject than the two
mentioned above (it includes both of them as special cases) and a less well
developed one. However, although a casual observer may decide the subject
is simply a grab bag of unrelated techniques used to handle different types
of problems, there are in fact certain themes that run throughout.

In order to illustrate these themes we take two approaches. The first is
to pose a group of questions that arise in many problems in PDEs (ex-
istence, multiplicity, etc.). As examples of different methods of attacking
these problems, we examine some results from the theories of ODEs, ad-
vanced calculus and complex variables (with which the reader is assumed
to have some familiarity). The second approach is to examine three partial
differential equations {Laplace’s equation, the heat equation and the wave
equation) in a very elementary fashion (again, this will probably be a re-
view for most readers). We will see that even the most elementary methods
foreshadow deeper results found in the later chapters of this book.



2 1. Introduction

1.1 Basic Mathematical Questions

1.1.1 FExistence

Questions of existence occur naturally throughout mathematics. The ques-
tion of whether a solution exists should pop into a mathematician’s head
any time he or she writes an equation down. Appropriately, the problem of
existence of solutions of partial differential equations occupies a large por-
tion of this text. In this section we consider precursors of the PDE theorems
to come.

Initial-value problems in ODEs

The prototype existence result in differential equations is for initial-value
problems in ODEs.

Theorem 1.1 (ODE existence, Picard-Lindeldf). Let D C R x R*
be an open set, and let F : D — R"™ be continuous in its first variable
and uniformly Lipschitz in its second; i.e., for (t,y) € D, F(t,y) is
continuous as a function of t, and there exists a constant v such that for
any (t,y1) and (t,y2) in D we have

[F(t,y1) — Ft,y2)| < 7ly1 — yal- (1.1)

Then, for any (to,yo) € D, there exists an interval I := (t7,t*) containing
to, and at least one solution y € C*(I) of the initial-value problem

2 (1) = F e y(0), (1.2

y(to) = yo. (1.3)

The proof of this can be found in almost any text on ODEs. We make
note of one version of the proof that is the source of many techniques in
PDEs: the construction of an equivalent integral equation. In this proof,
one shows that there is a continuous function y that satisfies

y®=m+lF&ﬂw“- (1.4)

Then the fundamental theorem of calculus implies that y is differentiable
and satisfies (1.2), (1.3) (cf. the results on smoothness below). The solution
of (1.4) is obtained from an iterative procedure; i.e., we begin with an initial
guess for the solution (usually the constant function yo) and proceed to
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calculate
i) = o+ J; F(s,y0) ds,
y2(t) = Yo+ [ F(s,y1(5)) ds,
(1.5)
Yerr(t) = yo+ [, F(s,yx(s)) ds,

Of course, to complete the proof one must show that this sequence
converges to a solution.

We will see generalizations of this procedure used to solve PDEs in later
chapters.

Existence theorems of advanced calculus

The following theorems from advanced calculus give information on the
solution of algebraic equations. The first, the inverse function theorem,
considers the problem of n equations in n unknowns.

Theorem 1.2 (Inverse function theorem). Suppose the function
F:R" 3 x:=(x1,...,2n) — F(x) 1= (F1(x),..., Fa(x)) € R"

is C! in a neighborhood of a point xo. Further assume that

F(x0) = po
and
gh(x0) -+ 8B (xo)
OF ) )
B‘;C‘(XO) = : . :
& (xo) -+ ZE(xo)

is nonsingular. Then there is a neighborhood N, of xo and a neighborhood
N, of po such that F : N — N, is one-to-one and onto; i.e., for every
P € N,, the equation

F(x)=p
has a unique solution in N,.

Our second result, the implicit function theorem, concerns solving a
system of p equations in ¢ + p unknowns.

Theorem 1.3 (Implicit function theorem). Suppose the function
F:R?xRP 3 (x,y) — F(x,y) e R?
is C' in a neighborhood of a point (xo,yo). Further assume that

F(xo0,y0) =0,
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and that the p x p matriz

St (x0,¥0) -+ $Er(x0,0)
oF .
5y—(xo,yo) = : : :

OF, oF,

3 (X0, ¥0) -+ FE(X0,¥0)

is nonsingular. Then there is a neighborhood N C R? of xg and a function
¥y : N; — RP such that
¥(x0) = yo,
and for every x € N,
F(x,y(x)) = 0.

The two theorems illustrate the idea that a nonlinear system of equations
behaves essentially like its linearization as long as the linear terms dominate
the nonlinear ones. Results of this nature are of considerable importance
in differential equations.

1.1.2 Multiplicity

Once we have asked the question of whether a solution to a given problem
exists, it is natural to consider the question of how many solutions there
are.

Uniqueness for initial-value problems in ODEs
The prototype for uniqueness results is for initial-value problems in ODEs.

Theorem 1.4 (ODE uniqueness). Let the function F satisfy the hypo-
theses of Theorem 1.1. Then the initial-value problem (1.2), (1.3) has at
most one solution.

A proof of this based on Gronwall’s inequality is given below.

It should be noted that although this result covers a very wide range of
initial-value problems, there are some standard, simple examples for which
uniqueness fails. For instance, the problem

dy _ 1/3
dt - y )
y(0) = 0

has an entire family of solutions parameterized by v € [0, 1]:

() = 0, 0<t<y
P 2 -), y<t<l
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Nonuniqueness for linear and nonlinear boundary-value problems

While uniqueness is often a desirable property for a solution of a problem
(often for physical reasons), there are situations in which multiple solutions
are desirable. A common mathematical problem involving multiple solu-
tions is an eigenvalue problem. The reader should, of course, be familiar
with the various existence and multiplicity results from finite-dimensional
linear algebra, but let us consider a few problems from ordinary differential
equations. We consider the following second-order ODE depending on the
parameter A:

u’ +du=0. (1.6)

Of course, if we imposed two initial conditions (at one point in space)
Theorem 1.4 would imply that we would have a unique solution. (To apply
the theorem directly we need to convert the problem from a second-order
equation to a first-order system.) However, if we impose the two-point
boundary conditions

u(0) = 0, (1.7)

W(1) = 0, (1.8)
the uniqueness theorem does not apply. Instead we get the following result.

Theorem 1.5. There are two alternatives for the solutions of the
boundary-value problem (1.6), (1.7), (1.8).
L Ifd=X,=((2n+1)?1%)/4,n = 0,1,2,..., then the boundary-value
problem has a family of solutions parameterized by A € (—o0,0):
1
up(z) = Asin (_2n_+2-_)_7rx.
In this case we say A is an eigenvalue.

2. For all other values of A the only solution of the boundary-velue
problem is the trivial solution

u(z) = 0.

This characteristic of having either a unique (trivial) solution or an infi-
nite linear family of solutions is typical of linear problems. More interesting
multiplicity results are available for nonlinear problems and are the main
subject of modern bifurcation theory. For example, consider the following
nonlinear boundary-value problem, which was derived by Euler to describe

the deflection of a thin, uniform, inextensible, vertical, elastic beam under
a load A:

6" (z) + Asin8(z) = 0, (1.9)

6(0) = 0, (1.10)
1) = o. (1.11)



