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Foreword

Free loop spaces play a central role in two recent advances in algebraic topology.
The first one is string topology, a subject born with the seminal work of Chas
and Sullivan in 1999, who uncovered new algebraic structure in the homology of
free loop spaces on manifolds. The second one is topological cyclic homology, a
topological version of Connes’ cyclic homology introduced in 1993 by Bokstedt,
Hsiang, and Madsen.

A summer school was held in Almeria from September 16 to 20, 2003, to
cover topics in this new and exciting field.

The first part of this book consists of the joint account of the two lecture
series which focused on string topology (Cohen and Voronov). It discusses the loop
product from the original point of view of Chas and Sullivan, from the Cohen-Jones
stable point of view, as well as Voronov’s operadic point of view.

The second part is essentially an account of the course devoted to the con-
struction of algebraic models for computing topological cyclic homology (Hess).
Starting with the study of free loop spaces and their algebraic models, it continues
with homotopy orbit spaces of circle actions, and culminates in the Hess-Rognes
construction of a model for computing spectrum cohomology of topological cyclic
homology.

Ralph L. Cohen, Kathryn Hess, and Alexander A. Voronov

The summer school was made possible thanks to the support of the Groupement
de Recherche Européen “Topologie Algébrique” (G.D.R.E. C.N.R.S. 1110) and the
Centre de Recerca Matematica (Barcelona).
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Introduction

String topology is the study of algebraic and differential topological properties of
spaces of paths and loops in manifolds. It was initiated by the beautiful paper of
Chas and Sullivan [CS99] in which algebraic structures in both the nonequivariant
and equivariant homology (and indeed chains) of the (free) loop space, LM, of a
closed, oriented manifold were uncovered. This has lead to considerable work by
many authors over the past five years. The goals of this paper are twofold. First,
this paper is meant to be an introduction to this new and exciting field. Second,
we will attempt to give a “status report”. That is, we will describe what has been
learned over the last few years, and also give our views about future directions
of research. This paper is a joint account of each of the author’s lecture series
given at the 2003 Summer School on String Topology and Hochschild Homology,
in Almeria, Spain.

In our view there are two basic reasons for the excitement about the develop-
ment of string topology. First, it uses most of the modern techniques of algebraic
topology, and relates them to several other areas of mathematics. For example,
the description of the structure involved in the string topology operations uses
such concepts as operads, PROPs, field theories, and Gerstenhaber and Batalin-
Vilkovisky algebras. The fundamental role played by moduli spaces of Riemann
surfaces in string topology, relates it to basic objects of study in algebraic and
symplectic geometry. Techniques in low dimensional topology such as the use of
graphs to study these moduli spaces are also used in an essential way. Moreover
there are both formal and computational relationships between string topology
and Gromov-Witten theory that are only beginning to be uncovered. Gromov-
Witten theory is a basic tool in string theory, algebraic geometry, and symplectic
geometry, and understanding its relationship to string topology is an exciting area
of current and probably future research.

The second reason for the attention the development of string topology has
been receiving has to do with the historical significance, in both mathematics
and physics, played by spaces of paths and loops in manifolds. The systematic
study of the differential topology of path and loop spaces began in the 1930’s
with Morse, who used his newly developed theory of “calculus of variations in
the large” to prove among other things that for any Riemannian metric on the



n-sphere, there are an infinite number of geodesics connecting any two points. In
the 1950's, R. Bott studied Morse theory on the loop spaces of Lie groups and
symmetric spaces to prove his celebrated periodicity theorem. In the 1970’s and
1980’s, the K-theoretic tools developed by Waldhausen to study diffeomorphisms
of high dimensional manifolds were found to be closely related to the equivariant
stable homotopy type of the free loop space. Finally, within the development of
string theory in physics, the basic configuration spaces are spaces of paths and
loops in a manifold. Some of the topological issues this theory has raised are the
following.

1. What mathematical structure should the appropriate notions of field and
field strength have in this theory? This has been addressed by the notion of
a “B-field”, or a “gerbe with connection”. These are structures on principal
bundles over the loop space.

2. How does one view elliptic operators, such as the Dirac operator, on the loop
space of a manifold? The corresponding index theory has been developed in
the context of elliptic cohomology theory.

3. How does one understand geometrically and topologically, intersection theory
in the infinite dimensional loop space and path space of a manifold?

It is this last question that is the subject of string topology. The goal of
these notes is to give an introduction to the exciting developments in this new
theory. They are organized as follows. In Chapter 1 we review basic intersection
theory, including the Thom-Pontrjagin construction, for compact manifolds. We
then develop and review the results and constructions of Chas and Sullivan’s
original paper. In Chapter 2 we review the concepts of operads and PROPS,
discuss many examples, and study in detail the important example of the “cacti
operad”, which plays a central role in string topology. In Chapter 3 we discuss field
theories in general, and the field theoretic properties of string topology. Included
are discussions of “fat graphs”, and how they give a model for the moduli space of
Riemann surfaces, and of “open-closed” string topology, which involves spaces of
paths in a manifold with prescribed boundary conditions. In Chapter 4 we discuss a
Morse theoretic interpretation of string topology, incorporating the classical energy
functional on the loop space, originally studied by Morse himself. In this chapter
we also discuss how this perspective suggests a potentially deep relationship with
the Gromov-Witten theory of the cotangent bundle. Finally in Chapter 5 we study
similar structures on spaces of maps of higher dimensional spheres to manifolds.

Acknowledgments . We are very grateful to David Chataur, José Luis Rodriguez,
and Jérome Scherer for organizing and inviting us to participate in such an active
and inspiring summer school. We would also like to thank David Chataur, Jérome
Scherer, and Jim Stasheff for many helpful suggestions regarding an earlier draft
of the manuscript.



Chapter 1

Intersection theory in loop
spaces

String topology is ultimately about the differential and algebraic topology of spaces
of paths and loops in compact, oriented manifolds. The basic spaces of paths that
we consider are C*°(R, M), C*(]0, 1], M), which we denote by P(M), C>(S*, M),
which we denote by LM, and Q(M,xz9) = {a € LM : a(0) = zo}. By the C™
notation we actually mean spaces of piecewise smooth maps. For example a map
f i [zo, xzx] — M is piecewise smooth if f is continuous and if there exists z¢ <
T <0 < Tp_1 < Tk with fl("'i"’i+1) infinitely differentiable for all <. These spaces

of paths are infinite dimensional smooth manifolds. See, for example [K1i82].

The most basic algebraic topological property of closed, oriented manifolds
is Poincaré duality. This manifests itself in a homological intersection theory. In
their seminal paper, [CS99], Chas and Sullivan showed that certain intersection
constructions also exist in the chains and homology of loop spaces of closed, ori-
ented manifolds. This endows the homology of the loop space with a rich structure
that goes under the heading of “string topology”.

In this chapter we review Chas and Sullivan’s constructions, as well as certain
homotopy theoretic interpretations and generalizations found in [CJ02], [CG04]. In
particular we recall from [Coh04b] the ring spectrum structure in the Atiyah dual
of a closed manifold, which realizes the intersection pairing in homology, and recall
from [CJ02] the existence of a related ring spectrum realizing the Chas-Sullivan
intersection product (“loop product”) in the homology of a loop space. We also
discuss the relationship with Hochschild cohomology proved in [CJ02], and studied
further by {Mer03], [FMT02], as well as the homotopy invariance properties proved
in [CKS05]. We begin by recalling some basic facts about intersection theory in
finite dimensions.



6 Chapter 1. Intersection theory in loop spaces

1.1 Intersections in compact manifolds

Let e : PP ¢ M9 be an embedding of closed, oriented manifolds of dimensions p
and n respectively. Let k be the codimension, k = d — p.

Suppose § € H,(M¢?) is represented by an oriented manifold, f : Q1 —» M?.
That is, 8 = f.([@]), where [Q] € H,(Q) is the fundamental class. We may assume
that the map f is transverse to the submanifold P C M, otherwise we perturb f
within its homotopy class to achieve transversality. We then consider the “pull-
back” manifold

QNP={ze€Q: f(z)e PC M}.

This is a dimension ¢ — k manifold, and the map f restricts to give a map f :
QN P — P. One therefore has the induced homology class,

ei(8) = £.(IQ N P)) € Hy_x(P).

More generally, on the chain level, the idea is to take a g-cycle in M, which
is transverse to P in an appropriate sense, and take the intersection to produce
a g — k-cycle in P. Homologically, one can make this rigorous by using Poincaré
duality, to define the intersection or “umkehr” map,

e+ Ho(M) — Ho_k(P)
by the composition
er: Hy(M) = HY9(M) > H*™U(P) = Hy_x(P)
where the first and last isomorphisms are given by Poincaré duality.
Perhaps the most important example is the diagonal embedding,
A:M— MxM.
If we take field coefficients, the induced umkehr map is the intersection pairing
p= A Hy(M) ® Hy(M) — Hpyq_a(M).

Since the diagonal map induces cup product in cohomology, the following diagram
commutes:

H,(M)® Hy(M) —E— Hpig-a(M)
o) |75

HYP(M) x H¥=9(M) —2— H*-P~9(M)

In order to deal with the shift in grading, we let H.(M) = H.4a(M). So
H, (M) is nonpositively graded.
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Proposition 1.1.1. Let k be a field, and M? a closed, oriented, connected manifold.
Then H.(M¢%; k) is an associative, commutative graded algebra over k, together
with a map € : H.(M; k) — k such that the composition

H,(M) x H, (M) —*— H, (M) —— k
is a nonsingular bilinear form. If k = Z/2 the orientation assumption can be

dropped.

In this proposition the map € : Hg{M) — k is zero unless ¢ = —d, in which
case it is the isomorphism

H_o(M) = Hy(M) = .

Such an algebraic structure, namely a commutative algebra A together with
amap € : A — k making the pairing {(a,b) = €(a-b) a nondegenerate bilinear form,
is called a Frobenius algebra.

We leave to the reader the exercise of proving the following, (see [Abr96]).

Proposition 1.1.2. A k-vector space A is a Frobenius algebra if and only if it is a
commutative algebra with unit and a cocommutative co-algebra

A:A-AQRA
with co-unit € : A — k, so that A is a map of A-bimodules.
Intersection theory can also be realized by the “Thom collapse” map. Con-

sider again the embedding of compact manifolds, e : P < M, and extend e to a
tubular neighborhood, P C 7. C M. Consider the projection map,

Te: M — M/(M — 7). (1.1)

Notice that M /(M —7,) is the one point compactification of the tubular neighbor-
hood, M /(M — 1¢) & 1 Uoo. Furthermore, by the tubular neighborhood theorem,
this space is homeomorphic to the Thom space P”c of the normal bundle, v, — P,

M/(M —ne) = ne Uoo = P,
So the Thom collapse map can be viewed as a map,
Te : M — PYe. (1.2)

Then the homology intersection map e, is equal to the composition,

er: Hy(M) 2% H (PY) = H,_(P) (1.3)

where the last isomorphism is given by the Thom isomorphism theorem. In fact
this description of the umkehr map e shows that it can be defined in any general-
ized homology theory, for which there exists a Thom isomorphism for the normal
bundle. This is an orientation condition. In these notes we will usually restrict our
attention to ordinary homology, but intersection theories in such (cojhomology
theories as K-theory and cobordism theory are very important as well.
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1.2 The Chas-Sullivan loop product

The Chas-Sullivan “loop product” in the homology of the free loop space of a
closed oriented d-dimensional manifold,

p: Hy(LM) ® Ho(LM) — Hpyq-a(LM) (1.4)

is defined as follows.

Let Map(8, M) be the mapping space from the figure 8 (i.e the wedge of
two circles) to the manifold M. As mentioned above, the maps are required to
be piecewise smooth (see [CJ02]). Notice that Map(8, M) can be viewed as the
subspace of LM x LM consisting of those pairs of loops that agree at the basepoint
1 € S'. In other words, there is a pullback square

Map(8, M) —— LM x LM

evl Jevxev (1.5)
M —Q MxM

where ev : LM — M is the fibration given by evaluating a loop at 1 € S*. In
fact, it can be shown that ev is a locally trivial fiber bundle [K1i82]. The map
ev : Map(8, M) — M evaluates the map at the crossing point of the figure 8.
Since ev x ev is a fibre bundle, e : Map(8, M) — LM x LM can be viewed as a
codimension d embedding, with normal bundle ev*(va) = ev* (T M).

The basic Chas-Sullivan idea, is to take a chain ¢ € Cp(LM x LM) that
is transverse to the submanifold Map(8, M) in an appropriate sense, and take
the intersection to define a chain ei(c) € Cp_q(Map(8, M)). This will allow the
definition of a map in homology, ei : H,(LM x LM) — H,_4(Map(8, M)). The
striking thing about the Chas-Sullivan construction is that this umkehr map exists
in the absence of Poincaré duality in this infinite dimensional context.

As was done in [CJ02], one can also use the Thom collapse approach to define
the umkehr map in this setting. They observed that the existence of this pullback
diagram of fiber bundles, means that there is a natural tubular neighborhood
of the embedding, e : Map(8, M) — LM x LM, namely the inverse image of a
tubular neighborhood of the diagonal embedding, A : M — M x M. That is, ne =
(ev x ev)~'(17a). Because ev is a locally trivial fibration, the tubular neighborhood
ne is homeomorphic to the total space of the normal bundle ev*(T'M). This induces
a homeomorphism of the quotient space to the Thom space,

(LM x LM)/((LM x LM) — 7.) = (Map(8, M))=*™{TM), (1.6)

Combining this homeomorphism with the projection onto this quotient space,
defines a. Thom-collapse map

Te s LM x LM — Map(8, M)e*" (TM), (1.7)
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For ease of notation, we refer to the Thom space of the pullback bundle,
ev*(TM) — Map(8, M) as (Map(8, M))TM.

Notice that if &, is any generalized homology theory that supports an orien-
tation of M (i.e the tangent bundle T M), then one can define an umkehr map,

ey ho(LM x LM) =5 ho((Map(8, M))T™) &% b, _4(Map(8, M)) (1.8)

where u € h%((Map(8, M))TM) is the Thom class given by the orientation.

Chas and Sullivan also observed that given a map from the figure 8 to M
then one obtains a loop in M by starting at the intersection point, traversing the
top loop of the 8, and then traversing the bottom loop. This defines a map

v : Map(8, M) - LM.

Thought of in a slightly different way, the pullback diagram 1.5 says that we
can view Map(8, M) as the fiber product Map(8, M) = LM Xy LM, as was done
in [CJ02]. The map ~ defines a multiplication map, which by abuse of notation we
also call v : LM x py LM — LM. This map extends the usual multiplication in the
based loop space, v : QM x QM — QM. In fact if one may view ev : LM — M
as a fiberwise H-space (actually an H-group), which is to say an H-group in the
category of spaces over M. It is actually an A, space in this category, coming from
the A, structure of the multiplication in QM , which is the fiber of ev : LM — M.
This aspect of the theory is studied further in [Gru05].

Chas and Sullivan also observed that the multiplication v : Map(8, M) —
LM is homotopy commutative, and indeed there is a canonical, explicit homo-
topy. In the formulas that follow, we identify S = R/Z. Now as above, consider
Map(8, M) as a subspace of LM x LM, and suppose (o, 3) € Map(8, M). We
consider, for each ¢ € [0, 1] a loop ~:(a, B), which starts at 3(—t), traverses the arc
between B(—t) and B(0) = a(0), then traverses the loop defined by «a, and then
finally traverses the arc between 8(0) and 8(—t). A formula for v;(a, 8) is given
by

B(2s—t), for 0<s<i
(e B)() = {a@s—1), for L<s<if (1.9)
B(2s —t), for % <s<1

One sees that vo(a, 8) = v(a, 8), and v1(a, 8) = (04, a).

The Chas-Sullivan product in homology is defined by composing the umkehr
map e with the multiplication map ~.

Definition 1.2.1. Define the loop product in the homology of a loop space to be
the composition

p: Ho(LM)® H (LM) — H (LM x LM) =5 H,_4(Map(8, M)) =5 H,_q(LM).
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Recall that the umkehr map e) is defined for any generalized homology theory
h. supporting an orientation. Now suppose that in addition, h. is a multiplicative
theory. That is, the corresponding cohomology theory h* has a cup product, or
more precisely, h, is represented by a ring spectrum. Then there is a loop product
in hy(LM) as well,

pih (LM)® h(LM) — hu_g(LM).
In order to accommodate the change in grading, one defines
H.(LM) = H.,qa(LM).

Using the naturality of the umkehr map (i.e the naturality of the Thom collapse
map) as well as the homotopy commutativity of the multiplication map ~, the
following is proved in [CS99].

Theorem 1.2.1. Let M be a compact, closed, oriented manifold. Then the loop
product defines a map

f : Ho(LM) @ Hy(LM) — H,(LM)

making H,(LM) an associative, commutative algebra. Furthermore, the evaluation
map ev : LM — M defines an algebra homomorphism from the loop algebra to the
intersection ring,

ev, : H,(LM) — H.(M).

As was shown in [CJ02), this structure also applies to h.(LM), where h. is
any multiplicative generalized homology theory which supports an orientation of
M.

1.3 The Batalin-Vilkovisky structure and the string
bracket

One aspect of the loop space LM that hasn’t yet been exploited is the fact there
is an obvious circle action

p:S*x LM — LM (1.10)

defined by p(t, @)(s) = a(t + s). The purpose of this section is to describe those
constructions of Chas and Sullivan [CS99] that exploit this action.
The existence of the S$'-action defines an operator

A : Hy(LM) — Hy(LM)
0 — p* (el ® 0)



