Shoshichi Kobayashi

Transformation Groups

in Differential Geometry

Bl g3 JLAAT v Y AR

Z PRk )

www.wpcbj.com.cn

Springer



Shoshichi Kobayashi

Transformation Groups
in Differential Geometry

Reprint of the 1972 Edition

&) Springer



Shoshichi Kobayashi

Department of Mathematics, University of California
Berkeley, CA 94720-3840

USA

Originally published as Vol. 70 of the
Ergebnisse der Mathematik und ihrer Grenzgebiete, 2nd sequence

Mathematics Subject Classification (1991):
Primary 53C20, 53C10, 53C55, 32M05, 32]25, 57515
Secondary 53C15, 53A10, 53A20, 53A30, 32H20, 58D05

ISBN 3-540-58659-8 Springer-Verlag Berlin Heidelberg New York

Photograph by kind permission of George Bergman

CIP data applied for

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, reuse of illustration, recitation, broadcasting,
reproduction on microfilm or in any other way, and storage in data banks, Duplication of this publication
or parts thereof is permitted only under the provision of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer-Verlag. Violations are
liable for prosecution under the German Copyright Law.

© Springer-Verlag Berlin Heidelberg 1995

The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,

even in the absence of a specific st t, that such are pt from the relevant protective laws
and regulations and therefore free for general use.

This reprint has been authorized by Springer-Verlag (Berlin/Heidelberg/New York) for sale in the
Mainland China only and not for export therefrom



BEERERE (CIP) B

5y AT g A B¥ = Transformation Groups in Differential
Geometry; ¥3x/ (H) /MRBLE . a4 . —db: i
FREFHRAFIIRLF, 2010.9

ISBN 978 -7 -5100 ~2732 -1

1. O T. O/ M. ORI AERBE—HX
V. ©0152. 2

R KR AR R CIP e s (2010) 55168754 5

3 #&: Transformation Groups in Differential Geometry
15 2. Shoshichi Kobayashi

BOE R WML AR
HEHE: "EF X

H W& HRERERAGIEAS

MR & SWEXEISHERAR

& 7. WMARAEBHRAARIERELAR (dEEEINAS 137 5 100010)
BEARHIE. 010 - 64021602, 010 - 64015659

HBFEMH:  kjb@ wpchj. com. cn

7 A, 24F

Ep . 8

R k. 20104£09 H
REAUERiE: B9 01 -2010 - 1493

H . 978-7-5100-2732-1/0 - 829 E f#fr: 29.000




Preface

Given a mathematical structure, one of the basic associated mathematical
objects is its automorphism group. The object of this book is to give a
biased account of automorphism groups of differential geometric struc-
tures. All geometric structures are not created equal; some are creations
of gods while others are products of lesser human minds. Amongst the
former, Riemannian and complex structures stand out for their beauty
and wealth. A major portion of this book is therefore devoted to these
two structures.

Chapter I describes a general theory of automorphisms of geometric
structures with emphasis on the question of when the automorphism
group can be given a Lie group structure. Basic theorems in this regard
are presented in §§ 3,4 and 5. The concept of G-structure or that of
pseudo-group structure enables us to treat most of the interesting geo-
metric structures in a unified manner. In § 8, we sketch the relationship
between the two concepts. Chapter I is so arranged that the reader who
is primarily interested in Riemannian, complex, conforma!l and projective
structures can skip §§ 5, 6, 7 and 8. This chapter is partly based on lec-
tures I gave in Tokyo and Berkeley in 1965,

Contents of Chapters II and III should be fairly clear from the
section headings. It should be pointed out that the results in §§ 3 and 4
of Chapter II will not be used elsewhere in this book and those of §§ S and
6 of Chapter II will be needed only in § 10 and 12 of Chapter IlI. I
lectured on Chapter II in Berkeley in 1968; Chapter 11 is a faithful version
of the actual lectures.

Chapter 1V is concerned with automorphisms of affine, projective
and conformal connections. We treat both the projective and the con-
formal cases in a unified manner.

Throughout the book, we use Foundations of Differential Geometry
as pur standard reference. Some of the referential results which cannot be
found there are assembled in Appendices for the convenience of the
reader.

As its title indicates, this book is concerned with the differential
geometric aspect rather than the differential topological or homological
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aspect of the theory of transformation groups. We have confined our-
selves to presenting only basic results, avoiding difficult theorems. To
compensate for the omission of many interesting but difficult results,
we have supplied the reader with an extensive list of references.

We have not touched upon homogeneous spaces, partly because they
form an independent discipline of their own. While we are interested in
automorphisms of given geometric structures, the differential geometry of
homogeneous spaces is primarily concerned with geometric objects
which are invariant under given transitive transformation groups. For
the convenience of the reader, the Bibliography includes papers on the
geometry of homogeneous spaces which are related to the topics discussed
here.

In concluding this preface, I would like to express my appreciation
to a number of mathematicians: Professors Yano and Lichnerowicz,
who interested me in this subject through their lectures, books and papers;
Professor Ehresmann, who taught me jets, prolongations and infinite
pseudo-groups; K. Nomizu, T. Nagano and T. Ochiai, my friends and
collaborators in many papers; Professor Matsushima, whose recent
monograph on holomorphic vector fields influenced greatly the presen-
tation of Chapter III; Professor Howard, who kindly made his manu-
script on holomorphic vector fields available to me. I would like to thank
Professor Remmert and Dr. Peters for inviting me to write this book and
for their patience.

I am grateful also to the National Science Foundation for its un-
failing support given to me during the preparation of this book.

January, 1972 S. Kobayashi
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1. Automorphisms of G-Structures

1. G-Structures

Let M be a differentiable manifold of dimension n and L(M) the bundle
of linear frames over M. Then L(M) is a principal fibre bundle over M
with group GL(n; R). Let G be a Lie subgroup of GL(n; R). By a G-struc-
ture on M we shall mean a differentiable subbundie P of L(M) with
structure group G.

There are very few general theorems on G-structures. But we can ask
a number of interesting questions on G-structures, and they are often
very difficult even for some specific G. It is therefore essential for the
study of G-structures to have familiarity with a number of examples.

In general, when M and G are given, there may or may not exist a
G-structure on M. If G is a closed subgroup of GL(n; R), the existence
problem becomes the problem of finding cross sections in a certain
bundle. Since GL(n; R) acts on L(M) on the right, a subgroup G also
acts on L{M). If G is a closed subgroup of GL(n; R), then the quotient
space L(M)/G is the bundle with fibre GL(n; R)/G associated with the
principal bundle L(M). It is then classical that the G-structures on M are
in a natural one-to-one correspondence with the cross sections

M — L(M)/G

(see, for example, Kobayashi-Nomizu [1, vol. 1; pp. 57-58]). The so-
called obstruction theory gives necessary algebraic-topological condi-
tions on M for the existence of a G-structure (see, for example, Steen-
rod [1]). :

A G-structure P on M is said to be integrable if every point of M has a
coordinate neighborhood U with local coordinate system x', ..., x" such
that the cross section (6/0x", ..., 8/0x") of L(M) over U is a cross section
of P over U. We shall call such a local coordinate system x',..., x"
admissible with respect to the given G-structure P. If x', ..., x" and
y', ..., )" are two admissible local coordinate system in open sets U
and Vrespectively, then the Jacobian matrix (8y'/dx/), ;_,  .isin G at
each pointof Un V.
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Proposition 1.1. Ler K be a tensor over the vector space R" (i.e., an
element of the tensor algebra over R*) and G the group of linear transfor-
mations of R” leaving K invariant. Let P be a G-structure on M and K the
tensor field on M defined by K and P in a natural manner ( see the proof
below). Then P is integrable if and only if each point of M has a coordinate
neighborhood with local coordinate system x', ..., X" with respect to which
the components of K are constant functions on U.

Proof. We give the definition of K although it is more or less obvious.
At each point x of M, we choose a frame u belonging to P. Since u is a
linear isomorphism of R" onto the tangent space T,(M), it induces an
isomorphism of the tensor algebra over R" onto the tensor algebra
over T.(M). Then K, is the image of K under this isomorphism. The
invariance of K by G implies that K, is defined independent of the choice
of u.

Assume that P is integrable and let x, ..., x" be an admissible local
coordinate system. From the construction above, it is clear that the
components of K with respect to x', ..., x" coincide with the components

of K with respect to the natural basis in R" and, hence, are constant
functions.

Conversely, fet x', ..., X" be a local coordinate system with respect to
which K has constant components. In general, this coordinate system is
not admissible. Consider the frame (3/9x', ...,3/0x") at the origin of
this coordinate system. By a linear change of this coordinate system, we
obtain a new coordinate system y', ..., y”" such that the frame (3/dy". ...,
0/0y") at the origin belongs to P. Then K has constant components with
respect to y', ..., y". These constant components coincide with the com-
ponents of K with respect to the natural basis of R” since (9/3)', ..., 8/3y")
at the origin belong to P. Let u be a frame at xe U belonging to P. Since
the components of K with respect to u coincide with the components
of K with respect to the natural basis of R" and, hence, with the compo-
nents of K with respect to (9/dy', ..., 8/2y™, it follows that the frame

(6/0y', ..., 8/dy") at x coincides with ¥ modulo G and. hence, belongs
to P. g.ed.

Proposition 1.2. If a G-structure P on M is integrable, then P admits a
torsionfree connection.

Proof. Let U be a coordinate neighborhood with admissible local
coordinate system x', ..., x". Let wy be the connection form on P|U
defining a flat affine connection on U such that 0/0x',...,0/0x" are
parallel. We cover M by a locally finite family of such open sets U.
Taking a partition of unity { f,;} subordinate 1o {U}, we define a desired



1. G-Structures 3

connection form w by

w:-"z n‘fv Wy,
v

where n: P— M is the projection. g.ed.

In some cases, the converse of Proposition 1.2 is true. For such
examples, see the next section.

Let P and P be G-structures over M and M'. Let fbe a diffeomorphism
of M onto M’ and f,: L(M)— L(M’) the induced isomorphism on the
bundles of linear frames. If f, maps P into P, we call f an isomorphism of
the G-structure P onto the G-structure 7. If M =M’ and P=P, then an
isomorphism f'is called an automorphism of the G-structure P.

A vector field X on M is called an infinitesimal automorphism of a
G-structure P if it generates a local 1-parameter group of automorphisms
of P.

As in Proposition 1.1, we consider those G-structures defined by a
tensor K. Then the following proposition is evident.

Proposition 1.3. Let K be a tensor over the vector space R" and G the
group of linear transformations of R" leaving K invariant. Let P be a G-
structure on M and K the tensor field on M defined by K and P. Then

(1) A diffeomorphism f: M — M is an automorphism of P if and only if f
leaves K invariant;

(2) A vector field X on M is an infinitesimal automorphism of P if and
only if Ly K =0, where Ly denotes the Lie derivation with respect to X.

We shall now study the local behavior of an infinitesimal automor-
phism of an integrable G-structure. Without loss of generality, we may
assume that M =R" with natural coordinate system x',...,x" and
P=R"xG. Let X be a vector field in (a neighborhood of the origin of)
R" and expand its components in power series:

where a4, are symmetric in the subscripts j, ..., ji. Since X is an
infinitesimal automorphism of P if and only if the matrix (0&/dxf)
belongs to the Lie algebra g of G, we may conclude that X is an infini-
tesimal automorphism of P if and only if, for each fixed j,, ..., j;. the

matrix (@}, ;, ;)i j-1.... belongs to the Lie algebra g. This motivates
the following definition.
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Let g be a Lie subaigebra of gl(n; R). For k=0, 1,2, ..., let g; be the
space of symmetric multilinear mappings
t: R"x---xR"—-R"
vt ——
(k4 Y )-times
such that, for each fixed v,, ..., »,€R", the linear transformation

veR"— (v, v, ..., 0)eR"

belongs to g. In particular, g,=g. We call g, the k-th prolongaiion of g.
The first integer k such that g, =0 is called the order of g. If g, =0, then
Ok, 1 =0, 2=-=0. If g, 0 for all k, then g is said to be of infinite type.

Proposition 1.4. A Lie algebra g — gl(n; R) is of infinite type if it contains
a matrix of rank 1 as an element.

Proof. Let e be a nonzero element of R” and a« a nonzero element of
the dual space of R". Then the linear transformation defined by

veR”— (a,v) ecR”

is of rank 1, and conversely, every linear transformation of rank 1 is
given as above. Assume that the transformation above belongs to g. For
each positive integer k, we define

t{vg, vy, ..., 0 )=<a, vp> (o, 1, > - (o, pde, v;eR™
Then ¢ is a nonzero element of g, . g.ed

We say that a Lie algebra gcgl(n: R) is elliptic if it contains no
matrix of rank 1. Proposition 1.4 means that if g is of finite order, then it
is elliptic.

Each Lie subalgebra g of gl(n; R) gives rise to a graded Lie algebra
Y . where g_, =R". The bracket of reg, and t'eg, is defined by

k=~1
’ ‘ ’
[t,'](voq Uty ooey vp*q)=—p—mzt(t (vjo, .-.,vj'),, Uj'”. ary u]‘p’q)

] .
~ Gt PN 4 {1 GO A NUVRT S B

In particular, if teg,, p20, and veg_, =R", then
[1,v](y,, ey v)=1(v, 01, ...,0,).

We explicitly set [g_,,g.,]=0. This definition is motivated by the
following geometrical consideration. Suppose t=(a}, i,)EQ, and '=
(By,...xJEQ, in terms of components and consider the corresponding
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vector fields:

.0
1p
(p+1)' L Gn..sp X°- X" o
0
kq
q+1)' Y bk X0 x PR

Then [ X, Y] corresponds to [¢t,t']). Thus, the graded Lie algebra Z G

ke -1

may be considered as the Lie algebra of infinitesimal automorphisms
x=Y¢ 5‘3—‘7 with polynomial components & of the flat G-structure P=

R"x G on R".

For a survey on G-structures, see expository articles of Chern [1], [2];
the latter contains an extensive list of publications on the subject. See
also Sternberg’s book [1], A. Fujimoto [2], [3], Bernard [ 1].

The group of automorphisms of a compact elliptic structure or a
G-structure of finite type will be shown to be a Lie transformation group
(see §§ 4 and 5, respectively). These two cases cover a substantial number
of interesting geometric structures whose automorphism groups are Lie
groups. By considering G-structures of higher degree, we can bring such
structures as projective structures under this general scheme (see §8 of
this chapter and Chapter 1V). The group of automorphisms of a bounded
domain or a similar complex manifold is also a Lie group (see §1 of
Chapter I11), but this does not come under the gencral scheme. This book
does not touch area-measure structures (Brickell [1]), nor pseudo-con-
formal structures of real hypersurfaces in complex manifolds (Morimoto-
Nagano [1], Tanaka [3]) although automorphism groups of these struc-
tures are usually Lie groups.

2. Examples of G-Structures

Example 2.1. G=GL(n; R) and g=gl(n; R). The Lie algebra g contains
a matrix of rank 1 and is of infinite type. A G-structure on M is nothing
but the bundle L(M) of linear frames and is obviously integrable. Every
diffeomorphism of M onto itself is an automorphism of this G-structure
and every vector ficld on M is an infinitesimal automorphism.

Example 2.2. G=GL"* (n; R)and g =gl(n; R), where GL* (n; R) means
the group of matrices with positive determinant. The Lie aigebra g is
of infinite type. A manifold M admits a GL* (n; R)-structure if and only
if it is orientable; this is more or less the definition of orientability.
A GL* (n; R)-structure on M may be considered as an orientation of M
and is obviously integrable. A diffeomorphism of M onto itself is an



6 1. Automorphisms of G-Structures

automorphism of a GL* (n; R)-structure if and only if it is orientation
preserving. Every vector field on M is an automorphism since every one-
parameter group of transformations is orientation preserving.

Example 2.3. G =SL(n; R) and g=sl(n; R). Again, g contains a matrix
of rank 1 and is of infinite type. The natural action of GL(n; R) on R"
induces an action of GL(n; R) on A" R" such that

Av=det{4)-v for AeGL(n;R) and veA"R"

The group GL{(n; R) is transitive on A" R"— {0} with isotropy subgroup
SL(n; R)so that A" R”— {0} = GL(n; R)/SL(n; R). It follows that the cross
sections of the bundle L(M)/SL(n; R) are in one-to-one correspondence
with the volume elements of M, i.e., the n-forms on M which vanish
nowhere. In other words, an SL(n; R)-structure is nothing but a volume
element on M. It is clear that M admits an SL(n; R)-structure if and only
il 1t is orientable. We claim that every SL(n; R)-structure is integrable.
Indeed, let U be a coordinate neighborhood with local coordinate system
x',...,x" and let ¢ =fdx' A ... Adx" be the volume element correspond-
ing to the given SL(n; R)-structure. Let y' =y'(x', ..., x") be a function
such that dy'/dx' = f. Then

o=fdx' A--- Adx"=dy' Adx* A - AdX",

which shows that the coordinate system y', x2, ..., x" is admissible with
respect to the given SL(n; R)-structure. A diffeomorphism of M onto
itself is an automorphism of the SL(n; R}-structure if and only if it
preserves the volume element ¢. Let X be a vector field on M. The function
4 X defined by

Lyp=(6X) ¢

is called the divergence of X with respect to ¢. Clearly, X is an infini-
tesimal automorphism of the SL(n; R}-structure if and only if § X =0.
For SL(n; R)-structures, see § 6.

Example 2.4. G=GL(m; C) and g=gl(m; C). We consider GL{m; C)
(resp. gl{m; C)) as a subgroup of GL{(2m; R) (resp. a subalgebra of
gl(2m; R)) in a natural manner, i.e.,

A A
A,+iA,c-GL(m;C)—.( ! 2)eGL(zm;R)
—A; A
or glim;C) or gl{2m:R).
Let z', ..., 2" be the natural coordinate system in C™" and z/ = x/ +i x™* 4,

j=1,...,m Then the identification C"=R?" given by

(z', ..., 2") = (x", ..., x*™)
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induces the preceding injections
GL(m; C)—»GL(2m; R) and gl(m; C)—gl(2m; R).
The multiplication by i in C™, i.e.,
(', ....2") s (iz', ..., iz"),
induces a linear transformation
(L x™ xmt L xXEM) s (—xmt L =X x™
of R*™, which will be denoted by J. Since i*= —1, we have J?=—1. In
matrix form,
J-—(O —1)
={; o

The group GL(m; C) (resp. the algebra gl(m; C)), considered as a sub-
group of GL(2m; R) (resp. a subalgebra of gl(2m; R)), is given by

GL(m; C)={AeGL(2m; R); AJ=J A}
gl(m; C)={Aegl(2m; R); AJ=J A}

Since g, consists of all symmetric multilinear mappings of C"x --- x C™
(k + 1 times) into C™, the Lie algebra g is of infinite type. Every element
of g, considered as an element of gl(2m; R) is of even rank. Hence, g is
elliptic. The GL(m; C)-structure on a manifold M (of dimension 2m) are
in one-to-one correspondence with the tensor field J of type (1, 1) on M

such that _
Jeody=~—1, (orsimply,JeJ=—1),

where J, is the endomorphism of the tangent space T,(M) given by J
and I, is the identity transformation of T,(M). The correspondence is
given as follows. Given a tensor field J with JoJ= —], we consider, at
each point x of M, only those linear frames u: R?™— T, (M) satisfying
uoJ=J,ou The subbundle of L(M) thus obtained is the corresponding
GL(m; C)-structure on M. A tensor field J with JoJ= —1 or the cor-
responding GL(m; C)-structure is called an almost complex structure.
We claim that an almost complex structure is integrable (as @ GL(m; C)-
structure) if and only if it comes from a complex structure. (Before we explain
this statement, we should perhaps remark an almost complex structure J
is often called integrable if a certain tensor field of type (1, 2), called the
torsion or Nijenhuis tensor, vanishes.) It is a deep result of Newlander
and Nirenberg [ 1] that the two definitions coincide. For the real analytic
case, see, for instance, Kobayashi-Nomizu [1, vol. 2; p. 321]. The theorem
of Newlander-Nirenberg is equivalent to the statement that an GL(m; C)-
structure is integrable if and only if it admits a torsionfree affine connec-
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tion (see Frohlicher [1]). Let M be a complex manifold of complex
dimension m with local coordinate system z!, ..., z™ where z/=x’+i /.
We have the natural almost complex structure J on M defined by

J(0/oxy=2d/oy j=1,....m,
J(@/dy)= ~d/ox’ j=1,....,m.

The almost complex structure J thus obtained is integrable since
(9/0x', ..., 0/dx™, d/8y", ..., 0/dy™

gives a local cross section of the GL(m; C)-structure defined by J. Con-
versely, if an almost complex structure J is integrable as a GL(m; C)

structure and if x', ..., x*™ is an admissible local coordinate system, then
J(@/0x))=0/0x"*! and J(8/0x™*/y= ~8/dx! for j=1,....m. If we set
Z'=x/+ix™*J then the complex coordinate system z,...,z" turns M

into a complex manifold. A diffeomorphism f of M onto itself is an auto-
morphism of an almost complex structure J if and only if f o J=Jof,,
where f,: T(M)— T(M) is the differential of f. If J is integrable, an auto-
morphism f is nothing but a holomorphic diffeomorphism. A vector
field X on M is an infinitesimal automorphism of an almost complex
structure J if and only if

[(X,JY]=J(X,Y)) forall vector field Yon M.

For further properties of an almost complex structure, sece Kobayashi-
Nomizu (1; Chapter IX].

Example 2.5. G=0(n) and g=o(n). The Lic algebra g is of order 1.
Let teg, and (t;,) the components of . By definition, tu="1,;. Since o(n)
consists of skew-symmetric matrices, we have }, = —t/,. Hence,

o= —t],= _l£i=¢i=¢j= —~lyy= —1l,

thus proving tj, =0. To each Riemannian metric on M, there corresponds
the bundle of orthonormal frames over M. This gives a one-to-one corre-
spondence between the Riemannian metrics on M and the O(n)-struc-
tures on M. An O (n)-structure is integrable if and only if the corresponding
Riemannian metric is flat, i.e, it has vanishing curvature. An automor-
phism of an O(n}-structure is an isometry of the corresponding Rieman-
nian metric. An infinitesimal automorphism of an O(n)-structure is an
infinitesimal isometry or Killing vector field. We shall discuss isometries
and Killing vector fields in detail later (see Chapter II).

More generally, let G=0(p,q), n=p+q, be the orthogonal group
defined by a quadratic form uj +--- +u?—u2,, ~---~u?. Then o(p, g) is

h p+l
also of order 1. There is a natural one-to-one correspondence between
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the pseudo-Riemannian metrics of signature g on M and the O(p, q)-
structures on M. An O(p, q)-structure is integrable if and only if the
corresponding pseudo-Riemannian metric has vanishing curvature. It
should be remarked that, although every paracompact manifold admits
a Riemannian metric, it may not in general admit a pseudo-Riemannian
metric of signature q for g 0, n. For automorphism of pseudo-Rieman-
nian manifolds, see Tanno [1, 2].

Example 2.6. G=CO(n) and g =co(n), n2 3. By definition,
CO(m)={AcGL(n; R); 44 =cl, ceR, c>0},
co(n)={Aegl(n; R); A+ A=cl, ceR}.
Thus, CO(n)=0(n)x R* and co(n)=o0(n)+R, where R* denotes the
multiplicative group of positive real numbers. The Lie algebra co(n) is
of order 2 and the first prolongation g, is naturally isomorphic to the
dual space R"* of R". To determine g,, let t=(t},) be an element of g, .

Since the kernel of the homomorphism Aeco(n)— trace(A)eR is pre-
cisely o(n) and since o(n) is of order 1, the linear mapping

t=(G)eg »¢= (% 2‘: té.) eR"*

is injective. The kernel is the first prolongation of o(n). (The factor of
o is, of course, not important). To see that this mapping is also surjective,

we have only to observe that {=(¢,) is the image of t with tj, =5/ ¢, +
0.&;—0{&,. To prove g, =0, let t=(},,)€g,. For each fixed k, t{‘,, may be
considered as the components of an element in g, and hence can be
uniquely written

=00 Ein+ 85 & — 85 Eps
Since t!;, must be symmetric in all lower indices, we have Zt:, Ztﬁk,,
from which follows ¢, =¢,,. Fromz ,,,,,—Z ,,,,weobtam(n 2)5“—
—8j Zg,,,,, from which follows (n Z)Zf,,,.- —HZC.. and, hence,
Z.f,,,,-—O From(n—2)¢{;,=—6;,- Z{,,,,—Oandn23 weconclude ;=0

(The reader who prefers an mdex-free proof is referred to Kobayashi-
Nagano [3, III; p. 686].) A CO(n)-structure is called a conformal structure.
We say that two Riemannian metrics on M are conformally equivalent if
one is a multiple of the other by a positive function. The conformal
equivalence classes of Riemannian metrics on M are in a natural one-to-
one correspondence with the CO(n)structure on M. A conformal



