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Lecture 1 Introduction to Electrodynamics,
Vector Analysis ( [ ): Gradient

1.1 Introduction to electricity and magnetism

Electric and magnetic phenomena are widely observed in nature. There are
four fundamental forces which build up our world, i.e., gravitational,
electromagnetic, weak and strong interactions. Electromagnetic force is not
only one of them, actually it is the most important force for us. Atoms are
constructed by the Columbic attraction between nuclei and electrons.
Molecules, solids and all other condensed matter are also formed on the basis of -
electromagnetic interaction. In fact, the electromagnetic force builds up the
most of the macroscopic and microscopic world, except the nuclear structure
and the motion of celestial objects.

The study on electric and magnetic phenomena is based on the concept of
fields. This is an significant development in classic physics, which eliminates
the mistake of action at distance in Newton’s mechanics and shakes the classic
concepts of space and time in this mechanics. This is actually the prerequisite of
new physics, i.e., the Einstein’s theory of relativity. It will be seen that the
Maxwell’s theory of electricity and magnetism is automatically relativistic.

In classic physics, fields are understood as continuous media. However,
modern physics considers particles and fields as two aspects of matter. For
example, electrons are considered as particles in classic physics, but we also
have electronic field, which is described by the wave function of electrons.
Electric and magnetic fields are “field” in classic physics, they are also
“particles” in quantum theory, i.e., photon. This will be studied in the
quantum theory of fields, which is beyond the scope of the course.

Electric and magnetic fields are considered as different fields. In fact, we
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have only a united electromagnetic field. Electric field and magnetic field are
just two components of this field. In most cases, both fields coexist, they
cannot be separated. Only in special cases, we have either sole electric field or
sole magnetic field, which is the electrostatic field or the magnetic field of
steady current. Electrodynamics actually can be considered as classic theory of
fields.

The mathematical model of a field is obviously the function defined in a
certain domain of space, therefore in electricity and magnetism we need a
mathematical tool known as vector analysis, which is essentially the calculus on
these functions, either scalar or vector. We shall start the study on electric and
magnetic fields by introducing the mathematical tool.

1.2 Scalar and vector fields

Mathematically, any function, scalar or vector, defined in a certain domain
of space can be called a field. Thus we have a scalar field and a vector field
written as

= V(x,y,2); E = E(x,y,2) (1.1)
respectively, where «, ¥y, z are the Cartesian coordinates of the point.
Obviously, a scalar field means that the property of a field is completely defined
by its magnitude, while a vector field needs both its magnitude and direction. In
real three-dimensional space, the direction of a vector is denoted by its
directional cosines: cos a,cos B,cos y. However, these cosines can be easily
calculated from the projects of the vector on three coordinate axes. Thus, we
usually write a vector in its component form and each component represents a
scalar, 1.e.,

E. = E.(x,y,2); E, = E/(x,y,2); E, = E.(x,y,2) 1.2

In the study of vector field, we assume that the vector algebra is already
known. This includes the addition, subtraction, scalar and vector products
between two vectors. Especially, two formulas of mixed product with three
vectors involved are often used in our discussion below:
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A, A, A,
A« (BxC)=|B, B, B.{=—-B+(AXxC)=B.(CxA)
c. ¢, C.
(1.3)
AX(BxC)=BA-C)-CA-B) (1.4)

The formula (1.3) indicates that three vectors in the mixed product are cycling,
because the product actually represents the volume of parallelepiped spanned by

three vectors.

1.3 Gradient of scalar field

There are several quantities, known as gradient, divergence and curl,
which describe the important properties of scalar and vector fields,
respectively.

Gradient is the characteristic of a scalar field. The concept can be
introduced as follows. We first define the equipotential or level surface of the
field, which is given by

Viz,y,2) = C (1.5
where C is a constant. Note that the equation (1.5) is actually a condition or
constraint imposed on the coordinates of points in the three dimensional
manifold where the field exists, therefore the degree of freedom of the manifold
is reduced by one. Thus equation (1.5) leads to a two dimensional manifold,
i.e., a surface. For different constant C, the surface is in general different;
also, each point in the field must belong to a certain equipotential surface. The
great advantage of equipotential surface is that it provides an intuitive
description of the field, i.e., how the property of the field (denoted by the
value of the function V at each points) varies in this domain. Some important
information about the field, say its symmetry, can be immediately obtained from
these surfaces. This is shown in Fig.1.1.

Although the field remains constant on its equipotential surfaces, it
definitely varies from one surface to another and in general the way of variation
is different for different directions. However, there are infinite directions at
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each point. We then need to specify a particular direction, from which the way
that the field changes its value can be described. This leads to the concept of
gradient. The gradient of a field V{(x, y, 2), denoted by gradV or VV. is
defined as the rate of variation of the function along the normal of the
equipotential surface at the point. Gbviously, gradient must be a vector, which
is along the normal at the point under consideration and its magnitude indicates

how rapid the field changes its value.

(a) point charge (b) uniform field
Fig.1.1 Equipotential surfaces

We now put the definition into a mathematical form. In Cartesian

coordinate system, we may define a directional derivative along any direction ds

ds:
dv _ i V(e + Ax,y + Ay,z + Az) — V(x,y,2)
—— = lim
dS As =0 AS
A dx+r7V dy_'_(?Vg_z (1.6

de ds  Jy ds 3z ds
where s denotes the magnitude of the corresponding vector. Note that (1.6) is
obtained by expanding the numerator in Taylor series for «, ¥, z directions
respectively and keeping only the first terms. If ds is chosen along the normal,

then % ,%g s % are the directional cosines of the normal. Thus the three partial

derivatives of V(x, ¥, 2) in (1.6) can be considered as the three components
of a vector:
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QV(OC,A?L,Z)" +-3V(£L‘,y,z)n +9V(9L‘,y,2)€ - VV(OSg'UeZ)(l-?)
dx v ay e Iz : ‘

This is the gradient for the scalar field V(x, y, z). The formula (1.7) also
provides the method how to calculate the gradient if the field V is given in a
Cartesian coordinate system, i.e., one needs only to calculate the three partial
derivatives as the corresponding components for the gradient. Once the gradient
is obtained, an arbitrary directional derivative of the field can be calculated by
the formula from (1.6) .

dV _ dVdn _ dV d(scos®) - yv.ds

ds ~dnds dn  ds ds
where ¢ is the angle between the direction and the normal at the point, i.e. ,

= |VV]cos 8 (1.8)

the directional derivative is actually the projective of gradient in the given
direction.

It is noticed that scalar field V is an arbitrary function defined in a certain
region, thus the symbol V in (1.7) can be considered as a vectorial
differentiation operator, whose component form in Cartesian coordinates are.

Jd Jd Jd
= e, +Ze, + L )
A% 52€ aye!, L (1.9

The operator V (sometimes called Hamiltonian operator) will be often used
throughout the discussions below.

1.4 Gradient in cylindrical and spherical coordinate

systems

If a potential has cylindrical or spherical symmetry, we then use the
cylindrical or spherical coordinate system. In these cases, the gradient of the
field is written as

Cylindrical ;
_av, L1V, L av
VV(p,$,2) = 30 + 0 24 + e (1.1
Spherical:
VWir,0,$) = Ve + L2V, 1 9V (1.11)

77" " 7 36% " Tsing a8
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Note that both cylindrical and spherical coordinate systems are orthogonal
(i.e., the basic vectors e,, e4, €. and e,, e,, e; in each system are
perpendicular to each other. In fact, all basic vectors are defined in the same
way that they point to the direction of increasing the corresponding
coordinates). (1.10) and (1.11) indicate that the operator V in cylindrical and

spherical coordinates are written as

V = ape,, + ’ a¢e¢ + 5,¢ (1.12)
\Y 376 Y 360t Teing 74€* (1.13)

(1.10) and (1.11) are obtained by performing the coordinate transformations
from Cartesian to cylindrical and spherical systems, respectively. A general
formula for this transformation is very helpful. Suppose a vector is written in
two coordinate systems as

V=Ve +Ve,+Ve.=Ve:+ Ve, + Ve, (1.14)
Then its components in two coordinate systems are related by the following

formulas:
Jx dx Jdx
—=V: =V =V,
V. = a8 ,an " At
AE Ar) A{
.y Ay
v = 2¢ €+ a7 ”+a§VC (1.15)
Y Ae Ay Ar
dz az dz
‘Vé S “—Vg
V. = 9¢ + o/ + I8
Az A, Ay
where

8= J(5E) + (58) - ()

The Cartesian coordinates and cylindrical and spherical coordinates are
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related by.
Cylindrical;
X = pcosp; Yy = psinp; z = 2 (1.16)
Spherical.
x = rsind cos$; Yy = 7rsind sing; z = rcosd (1.17)

Applying (1.16) and (1.17) to the general formulas (1.15) and noting that the
components of gradient in Cartesian coordinates are given by (1.7), we get the
gradient formulas in cylindrical and spherical coordinates (1.10) and (1.11).

Questions

(1) How to understand the concept of field in classic physics?

(2) What is the significance of electromagnetic interaction in the structure of matter?

(3) Scalar and vector fields are the mathematical model of a physical field, true or false?

(4) How to derive the formula of gradient in Cartesian coordinates?

(5) How to understand the vector differentiation operator V 7

(6) How to transform the gradient formula to cylindrical or spherical coordinate system?

(7) What is the relationship between the gradient and a directional derivative of the field at each
point?
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2.1 Vector integration

For a vector field E(x, y,z), there are three integrations that can be
performed on it.
(1) Line integration: The integral is defined as

b
jb E(w,y,z)-dl=J E(r) - dl 2.1)
a(C)

a ()
where C is the curve defined in the domain where the field exists, a and b
being the starting and ending points of it (Fig.2.1),

r=we,t+ ye, + ze. (2.2)
is the position vector, which can also
be used to denote the coordinates of a
b point. The integration (2.1) is
performed along the curve C. Its
element is composed by the scalar
C product of the field E and the line
a element df, thus the integral should
Fig.2.1 Line integration be a scalar as a whole. The physical
reality corresponding to this integral

can be the work done by a force, if the vector field represents a force.

(2) Surface integration: The integral is defined as

JSE(x,y,x) . dS :LE(r)-dS 2.3)

where S is a surface in the domain where the field exists. The integral element
is the scalar product between the field E and the vectorial area element dS.
The latter is defined as a vector in the normal direction of the area and its
magnitude is given by the area itself, or dS = ndS, where n is a vector in the
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normal direction with unit length. Obviously, the integral as a whole is also a
scalar as each element is. The
physical reality of (2.2) can be found
as the flux for a field, which is
defined as the number of the force
line through the area (Fig.2.2). The n
density of the force line, by
definition, 1is proportional to the
strength of the field, or the
magnitude of E. However, the angle
between the force line and the
vectorial area element also matters
because when they are parallel to
each other, there will be no any force Fig.2.2  Surface integration
line passing through the area
element. The effective area for the force line to pass through is determined by
the project of the area element on the plane which is perpendicular to the force
line. Thus the flux is calculated by the scalar product.

(3) Volume integration: This is written as

f ECx,y,x)dV = j E(rydV (2.4)
e N

Note that in this case the integral element is a vector, it can be decomposed into
three normal (scalar) integrals for the three components of the field, i.e. ,

J E.(x,y,x)dV; JgE,,(x,y,x)dV; J E.Cx,y,x)dV (2.5
n 02
Obviously, the volume integration can also be applied to a scalar field, i.e. ,
| vy av (2.6)
Q

In all above formulas, the volume 2 is confined in the domain where the field
exists.

We shall see how these integrals are used to describe the properties of a
fieid.
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2.2 Divergence

The divergence of a vector field div E is defined as

SR Y
V-E = hmnggsE nds 2.7

a0
where (2 is the volume enclosed by the surface S, n is the unit vector in normal
direction. For an enclosed surface, its normal is assumed to direct outward,
otherwise it is said to be negative. Since the divergence is determined by the
limit when the volume (2 approaches to zero, the shape of the volume should not
be relevant, or 2 can be of any shape. On the other hand, as the volume
approaches to zero, the divergence is actually defined at a “point” (Fig.2.3a).
We can take the divergence itself as a scalar function defined in the same domain
as the field, or the divergence itself is a scalar “field” function.

z
A
iL """""""" 1
F::-‘--l --------- " :‘
| P
1 AZ | H
—O | P
i ] i
L) 1 i .
R T
; L
T
X
(@) (b)

Fig.2.3 (a) Understanding divergence; (b) Volume element

The explicit form of divergence in Cartesian coordinates can be derived as
follows. Since the shape of the small volume in the definition of divergence is
not relevant, we can take a rectangular parallelepiped with volume A =
AxAyAz and one corner at the point (a9, %, 2¢) for simplicity (Fig.2.3b).
In this case, the surface integration in (2.7) can be performed on the 6 sides of

the volume, i.e.,



