% Education

« SHEE)

(FHooW

#LH T b AR #

China Machine Press

@@@@@

T =) X R ARG T

Stephen R. Schach =
SEELL REFRE

(%)

Object-Oriented and
Classical Software
Engineering

Eighth Edition

B TA T TS T I

| |
L ¥ i’ V2 oY :- e

. ’ . B
:"' 1’. -':3'
3 3{%’-,6 = e
o =

Stephen R. Schach

mANKMEGHTE

éf{”ﬁ/zf)//////(// el (Z/?/})/r’///

L 4 Ce? -y :
ﬂ// /‘/f/r’ s € "f/’%{jﬁf’/? fiffl}f‘!.’//;;? (Eighth Edition)
7 7

Stephen R. Schach
SEfELLREFRF

(%) 3

ML T R i

“ China Machine Press

Stephen R. Schach: Object-Oriented and Classical Software Engineering, Eighth Edition (ISBN 978-0-07-
337618-9).

Copyright © 2011 by The McGraw-Hill Companies, Inc.

All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any
means, electronic or mechanical, including without limitation photocopying, recording, taping, or any database,
information or retrieval system, without the prior written permission of the publisher.

This authorized Bilingual edition is jointly published by McGraw-Hill Education (Asia) and China Machine
Press. This edition is authorized for sale in the People’s Republic of China only, excluding Hong Kong, Macao
SAR and Taiwan. .

Copyright © 2011 by McGraw-Hill Education (Asia), a division of the Singapore Branch of The McGraw-
Hill Companies, Inc. and China Machine Press.

RRFTE . RBHRAEEBEET, AHRDHEMTS ABUEMN I REEEEFSIEE, £
FEARRTFEE, FHl., FF, NETEREE. FENTRREORS.

ARBBERBZER T —F/R (EWH) B8 BRA FFHU Tl MR AR R . BeiRk A2 B SR 7E
FIEARSEMERN (AMEEE. RIFITEXREE) HE.

RO 2011 RS —A /R (EHH) BT HARA 7 S AU T R AT A .

ABE A McGraw-Hill 24 7]B5 th#r %, EREEARHE.

R T B iRy b #EAR
LR, BReR
AEFEEMD ARTREABFESH

AREEWEIZE: BF: 01-2011-1460

BHEREEB (CIP) #1E

B TAE. WM RGN Y GECR - #8M) / (%) #b# (Schach, S. R.) . —JbE. MLk
TlktHirtt, 2011.5

(MR B)
+5 £ JE 3L . Object-Oriented and Classical Software Engineering, Eighth Edition

ISBN 978-7-111-34196-3
Lk Iyb-- NLOKRMETLR-KL QEAMMNFES ~BFEIF - V. OTP31LS OTP312
o B AR A B CIPEAR % (2011) 450712555

Pl Tolk AR 3L GestibdsE B k225 iBE4ES 100037)
g BIRE

At S FRAFEEN A PR 2 =] B R

2011426 HEE 1 WS 1 IRENRI

186mm x 240mm - 43 E[lgk

A2, ISBN 978-7-111-34196-3

ZfH: 79.005C

JUAHS, BT, BT, BT, BALRITEHE
=Hithek. (010) 88378991, 88361066

My hes. (010) 68326294; 88379649, 68995259
Pikathgk. (010) 88379604

#1545 hzjsi@hzbook.com

HAREONE |

EE AR, EERK RIS S S R A, T E KA B ARERNEA
GIREUE T RIS, RIS, BERERZRBBEAZRNA T2 ERARKIEDH,
SRR, ZERCE RS, BRI SRE Rk RS, HRILERTNTS
#214b - F B AR B U BT 2R, BT SR B R E, RIOUBERI T HFSTRITERE,
BT T EARMED, BEEEANE, XABEEE R, ENEHASESANRTTEER.

B, EAIREBAXENED T, RENHHENZ LR RRE, S UAFNTREEE
B, XA EALEE R AR A NLE, R, WM RIS E R LB
BEE, AREELEARRBERAZENIRT, XEZREIEREHITEIAZRZRGILHE
IR AR BRI R RS E T L EBE L2, Wi, 50 —HEIMUSE HTHRENLE X & E
HEf&THE WL RBEFBRGEDER, LESHARN. BRAENHR —RA%LH
d N

Uk Tolb iR a4 A AR EIRE “HIRENEEMRS” . B1998FEF 1R, BT TIE
&HARE T . BEEMEBEM L. 23 LFNTAWE S, #Al5Pearson, McGraw-Hill,
Elsevier, MIT, John Wiley & Sons, Cengagesit i3 & HARA R T RFHIAIERR, Mk
TR A BBl R &kt W % H4 Andrew S. Tanenbaum, Bjarne Stroustrup, Brain W. Kernighan,
Dennis Ritchie, Jim Gray, Afred V. Aho, John E. Hopcroft, Jeffrey D. Ullman, Abraham
Silberschatz, William Stallings, Donald E. Knuth, John L. Hennessy, Larry L. Peterson®& X &
R —HBHES, UL “SPENREANE HEREIR, H$iE&E%E. Ak E. KEAQgHE
B E, BIEAR TXEMNBRISAFIEHR, '

“HEHBIEAS” WHRTESE TEMNIMEZSNRAES, BRRERAURETHE
FIEEHS S, DA EHIE TEIBMERNTAE, fEBAESSESREEARETED
(B4, IR EELIBNPIFAEF, L4, HHENREAD C2HRTEREA &5,
RS R T RIFI O, AR SERRANEREM TS ELE. RBHR "4
HERR AR Ve hih ik S ket £ L IE B F I E R T R B

BERIIfEL . SRS . —RKPEE. PROEE. BANGE, XERRERNHES
ATREMGIE, MEHEIEE EEAT LR IENAM S8R AR HRL, #F
Foat @AM BB R AR RS A —AF R, RIMBRRERERE, MRXBROE
RERBITABX —24% BARMEERE), 2N RANGEEIMFEE M ERON TR ERIERS
THIE, BRIABRRETEWT:

£ETR L. www.hzbook.com
B F-HBf4. hzjsj@hzbook.com
BEREIE. (010) 88379604
BEMU. AEFRRERFEHHLS £t §]

BRERES: 100037 HEFBE B BB S

Preface

Almost every computer science and computer engineering curriculum now includes a
required team-based software development project. In some cases, the project is only one
semester or quarter in length, but a year-long team-based software development project is
fast becoming the norm.

In an ideal world, every student would complete a course in software engineering before
starting his or her team-based project (“two-stage curriculum”). In practice, however, many
students have to start their projects partway through their software engineering course, or
even at the beginning of the course (“parallel curriculum”).

As explained in the next section, this book is organized in such a way that it can be used
for both curricula.

How the Eighth Edition Is Organized

The book comprises two main parts: Part B teaches the students how to develop a software
product; Part A provides the necessary theoretical background for Part B. The 18 chapters
are organized as follows:

Chapter 1 Introduction to software engineering
Part A Chapters 2 through 9 Software engineering concepts
Part B Chapters 10 through 17 Software engineering techniques
Chapter 18 Emerging technologies

Chapter 10 is new. It contains a summary of the key material of Part A. When the two-stage
curriculum is followed, the instructor teaches first Part A and then Part B (omitting Chapter 10,
because the material of Chapter 10 will have been covered in depth in Part A). For the parallel
curriculum, the instructor first teaches Part B (so that the students can start their projects as soon
as possible), and then Part A. The material of Chapter 10 enables the students to understand Part
B without first covering Part A.

This latter approach seems counterintuitive: Surely theory should always be taught
before practice. In fact, curricular issues have forced many of the instructors who have
used the seventh edition of this book to teach the material of Part B before Part A. Surpris-
ingly, they have been most satisfied with the outcome. They report that their students have
a greater appreciation of the theoretical material of Part A as a consequence of their project
work. That is, team-based project work makes students more receptive to and understand-
ing of the theoretical concepts that underlie software engineering.

In more detail, the material of the cighth edition may be taught in the following two ways:

1. Two-Stage Curriculum

Chapter 1 (Introduction to software engineering)
Part A Chapters 2 through 9 (Software engineering concepts)
Part B Chapters 11 through 17 (Software engineering techniques)
Chapter 18 (Emerging technologies)
The students then commence their team-based projects in the following semester
or quarter.

Preface v

2. Parallel Curriculum

Chapter 1 (Introduction to software engineering)
Chapter 10 (Key material from Part A)
The students now commence their team-based projects, in parallel with studying
the material of Part B.
Part B Chapters 11 through 17 (Software engineering techniques)
Part A Chapters 2 through 9 (Software engineering concepts)
Chapter 18 (Emerging technologies)

New Features of the Eighth Edition

» The book has been updated throughout.

+ Ihave added two new chapters. As previously explained, Chapter 10, a summary of key
points of Part A, has been included so that this book can be used when students start their
team-based term projects in parallel with their software engineering course. The other
new chapter, Chapter 18, gives an overview of 10 emerging technologies, including

* Aspect-oriented technology

* Model-driven technology

» Component-based technology
» Service-oriented technology

+ Social computing

* Web engineering

* Cloud technology

« Web3.0

« Computer security

» Model checking

+ T have considerably expanded the material on design patterns in Chapter 8, including a
new mini case study.

» Two theoretical tools have been added to Chapter 5: divide-and-conquer, and separation
of concerns.

+ The object-oriented analysis of the elevator problem of Chapter 13 now reflects a mod-
ern distributed, decentralized architecture.

+ The references have been extensively updated, with an emphasis on current research.
» There are well over 100 new problems.
+ There are new Just in Case You Wanted to Know boxes.

Features Retained from the Seventh Edition

+ The Unified Process is still largely the methodology of choice for object-oriented soft-
ware development. Throughout this book, the student is therefore exposed to both the
theory and the practice of the Unified Process.

» In Chapter 1, the strengths of the object-oriented paradigm are analyzed in depth.

vi Preface

The iterative-and-incremental life-cycle model has been introduced as early as possible, namely,
in Chapter 2. Furthermore, as with all previous editions, numerous other life-cycle models are
presented, compared, and contrasted. Particular attention is paid to agile processes.

In Chapter 3 (“The Software Process”), the workflows (activities) and processes of the
Unified Process are introduced, and the need for two-dimensional life-cycle models is
explained.

A wide variety of ways of organizing software teams are presented in Chapter 4 (“Teams”),
including teams for agile processes and for open-source software development.

Chapter 5 (“The Tools of the Trade™) includes information on important classes of
CASE tools.

The importance of continual testing is stressed in Chapter 6 (“Testing”).

Objects continue to be the focus of attention in Chapter 7 (“From Modules to Objects™).
Design patterns remain a central focus of Chapter 8 (“Reusability and Portability™).
The IEEE standard for software project management plans is again presented in
Chapter 9 (“Planning and Estimating”).

Chapter 11 (“Requirements™), Chapter 13 (“Object-Oriented Analysis”), and Chapter 14
(“Design”) are largely devoted to the workflows (activities) of the Unified Process. For
obvious reasons, Chapter 12 (“Classical Analysis™) is largely unchanged.

The material in Chapter 15 (“Implementation™) clearly distinguishes between imple-
mentation and integration.

The importance of postdelivery maintenance is stressed in Chapter 16.

Chapter 17 provides additional material on UML to prepare the student thoroughly for
employment in the software industry. This chapter is of particular use to instructors who
utilize this book for the two-semester software engineering course sequence. In the second
semester, in addition to developing the team-based term project or a capstone project, the
student can acquire additional knowledge of UML, beyond what is needed for this book.

As before, there are two running case studies. The MSG Foundation case study and the
Elevator Problem case study have been developed using the Unified Process. As usual,
Java and C++ implementations are available online at www.mhhe.com/schach.

In addition to the two running case studies that are used to illustrate the complete life
cycle, eight mini case studies highlight specific topics, such as the moving target prob-
lem, stepwise refinement, design patterns, and postdelivery maintenance.

In all the previous editions, I have stressed the importance of documentation, mainte-
nance, reuse, portability, testing, and CASE tools. In this edition, all these concepts are
stressed equally firmly. It is no use teaching students the latest ideas unless they appreci-
ate the importance of the basics of software engineering.

As in the seventh edition, particular attention is paid to object-oriented life-cycle mod-
els, object-oriented analysis, object-oriented design, management implications of the
object-oriented paradigm, and the testing and maintenance of object-oriented software.
Metrics for the object-oriented paradigm also are included. In addition, many briefer
references are made to objects, a paragraph or even only a sentence in length. The reason
is that the object-oriented paradigm is not just concerned with how the various phases
are performed but rather permeates the way we think about software engineering. Object
technology again pervades this book.

Preface vii

« The software process s still the concept that underlies the book as a whole. To control the pro-
cess, we have to be able to measure what is happening to the project. Accordingly, the emphasis
on metrics continues. With regard to process improvement, the material on the capability matu-
tity model (CMM), ISO/IEC 15504 (SPICE), and ISO/IEC 12207 has been retained.

« The book is still language independent. The few code examples are presented in C++
and Java, and I have made every effort to smooth over language-dependent details and
ensure that the code examples are equally clear to C++ and Java users. For example,
instead of using cout for C++ output and System.out.printin for Java output, I have
utilized the pseudocode instruction print. (The one exception is the new case study,
where complete implementation details are given in both C++ and Java, as before.)

+ As in the seventh edition, this book contains over 600 references. I have selected current
research papers as well as classic articles and books whose message remains fresh and rel-
evant. There is no question that software engineering is a rapidly moving field, and students
therefore need to know the latest results and where in the literature to find them. At the same
time, today’s cutting-edge research is based on yesterday’s truths, and I see no reason to
exclude an older reference if its ideas are as applicable today as they originally were.

» With regard to prerequisites, it is assumed that the reader is familiar with a high-level
programming language such as C, C#, C++, or Java. In addition, the reader is expected
to have taken a course in data structures.

Why the Classical Paradigm Is Still Included

There is now almost unanimous agreement that the object-oriented paradigm is superior
to the classical paradigm. Accordingly, many instructors who adopted the seventh edition
of Object-Oriented and Classical Software Engineering chose to teach only the object-
oriented material in that book. However, when asked, instructors indicated that they prefer
to adopt a text that includes the classical paradigm.

The reason is that, even though more and more instructors teach only the object-oriented
paradigm, they still refer to the classical paradigm in class; many object-oriented techniques are
hard for the student to understand unless that student has some idea of the classical techniques
from which those object-oriented techniques are derived. For example, understanding entity-
class modeling is easier for the student who has been introduced, even superficially, to entity-
relationship modeling. Similarly, a brief introduction to finite state machines makes it easier for
the instructor to teach statecharts. Accordingly, I have retained classical material in the eighth
edition, so that instructors have classical material available for pedagogical purposes.

The Problem Sets

As in the seventh edition, this book has five types of problems. First, there are running
object-oriented analysis and design projects at the end of Chapters 11, 13, and 14. These
have been included because the only way to learn how to perform the requirements, analy-
sis, and design workflows is from extensive hands-on experience.

Second, the end of each chapter contains a number of exercises intended to highlight key
points. These exercises are self-contained; the technical information for all the exercises
can be found in this book.

viii

Preface

Third, there is a software term project. It is designed to be solved by students working
in teams of three, the smallest number of team members that cannot confer over a standard
telephone. The term project comprises 15 separate components, each tied to the relevant
chapter. For example, design 1s the topic of Chapter 14, so in that chapter the component of
the term project is concerned with software design. By breaking a large project into smalier,
well-defined pieces, the instructor can monitor the progress of the class more closely. The
structure of the term project is such that an instructor may freely apply the 15 components
to any other project that he or she chooses.

Because this book has been written for use by graduate students as well as upper-class
undergraduates, the fourth type of problem is based on research papers in the software
engineering literature. In each chapter, an important paper has been chosen; wherever pos-
sible, a paper related to object-oriented software engineering has been selected. The student
is asked to read the paper and answer a question relating to its contents. Of course, the
instructor is free to assign any other research paper; the For Further Reading section at the
end of each chapter includes a wide variety of relevant papers.

The fifth type of problem relates to the case study. This type of problem was first intro-
duced in the third edition in response to a number of instructors who felt that their students
learn more by modifying an existing product than by developing a new product from scratch.
Many senior software engineers in the industry agree with that viewpoint. Accordingly, each
chapter in which the case study is presented has problems that require the student to modify
the case study in some way. For example, in one chapter the student is asked to redesign the
case study using a different design technique from the one used for the case study. In another
chapter, the student is asked what the effect would have been of performing the steps of the
object-oriented analysis in a different order. To make it easy to modify the source code of the
case study, it is available on the Web at www.mhhe.com/schach.

The website also has material for instructors, including a complete set of PowerPoint
lecture notes and detailed solutions to all the exercises as well as to the term project.

Material on UML

This book makes substantial use of UML (Unified Modeling Language). If the students do not
have previous knowledge of UML, this material may be taught in two ways. I prefer to teach
UML on a just-in-time basis; that is, each UML concept is introduced just before it is needed.
The following table describes where the UML constructs used in this book are introduced.

Section in Which the Corresponding

Construct UML Diagram Is Introduced
Class diagram, note, inheritance (generalization), Section 7.7

- aggregation, association, navigation triangle
Use case Section 11.4.3
Use-case diagram, use-case description Section 11.7
Stereotype Section 13.1
Statechart Section 13.6
Interaction diagram (sequence diagram, Section 13.15

communication diagram)

Preface ix

Alternatively, Chapter 17 contains an introduction to UML, including material above and
beyond what is needed for this book. Chapter 17 may be taught at any time; it does not depend
on material in the first 16 chapters. The topics covered in Chapter 17 are as follows:

Section in Which the Corresponding

Construct UML Diagram Is Introduced
Class diagram, aggregation, multiplicity, Section 17.2
composition, generalization, association

Note Section 17.3
Use-case diagram Section 17.4
Stereotype Section 17.5
Interaction diagram Section 17.6
Statechart Section 17.7
Activity diagram Section 17.8
Package Section 17.9
Component diagram Section 17.10
Deployment diagram Section 17.11

Online Resources

A website to accompany the text is available at www.mhhe.com/schach. The website
features Java and C++ implementations as well as source code for the MSG case study for
students. For instructors, lecture PowerPoints, detailed solutions to all exercises and the term
project, and an image library are available. For details, contact your sales representative.

Electronic Textbook Options

E-books are an innovative way for students to save money and create a greener environment
at the same time. An e-book can save students about half the cost of a traditional textbook
and offers unique features like a powerful search engine, highlighting, and the ability to
share notes with classmates using e-books.

McGraw-Hill offers this text as an e-book. To talk about the e-book options, contact your
McGraw-Hill sales representative or visit the site www.coursesmart.com to learn more.

Acknowledgments

I greatly appreciate the constructive criticisms and many helpful suggestions of the reviewers
of the seven previous editions. Special thanks go to the reviewers of this edition, including

Ramzi Bualuan Mike McCracken

University of Notre Dame Georgia Institute of Technology
Ruth Dameron Nenad Medvidovic

University of Colorado, Boulder University of Southern California
Werner Krandick Saeed Monemi

Drexel University California Polytechnic University, Pomona

x Preface

Taehyung Wang Xiaojun Qi
California State University, Northridge Utah State University
Jie Wei

City University of New York—City College

With regard to my publishers, McGraw-Hill, I am most grateful to copyeditor Kevin Camp-
bell and designer Brenda Rolwes. A special word of thanks goes to Melissa Welch of Studio
Montage, who transformed a photograph of Sydney Harbour Bridge at night into the stun-
ning cover.

Special thanks also go to Jean Naudé (Vaal University of Technology, Secunda Campus)
for co-authoring the Instructor’s Solution Manual. In particular, Jean provided a complete
solution for the term project, including implementing it in both Java and C++. In the course
of working on the ISM, Jean made numerous constructive suggestions for improving this
book. I am most grateful to Jean.

Finally, as always, 1 thank my wife, Sharon, for her continual support and encourage-
ment. As with all my previous books, I did my utmost to ensure that family commitments
took precedence over writing. However, when deadlines loomed, this was not always pos-
sible. At such times, Sharon always understood, and for this I am most grateful.

It is my privilege to dedicate my fifteenth book to my grandchildren, Jackson and
Mikaela, with love.

Stephen R. Schach

Contents

Preface

iv

Chapter 1
The Scope of Software Engineering 1

Learning Objectives 1

2.4 Teal Tractors Mini Case Study 42
2.5 Iteration and Incrementation 43
2.6 Winburg Mini Case Study Revisited 47
2.7 Risks and Other Aspects of Iteration and
Incrementation 43
2.8 Managing Iteration and
Incrementation 51
29 Other Life-Cycle Models 52
2.9.1 Code-and-Fix Life-Cycle Model 52
2.9.2 Waterfall Life-Cycle Model 53
2.9.3 Rapid-Prototyping Life-Cycle
Model 55
2.9.4 Open-Source Life-Cycle Model 56
2.9.5 Agile Processes 59
2.9.6 Synchronize-and-Stabilize Life-Cycle
Model 62
2.9.7 Spiral Life-Cycle Model 62
2.10 Comparison of Life-Cycle Models 66
Chapter Review 67
For Further Reading 68
Key Terms 69
Problems 69
References 70
Chapter 3
The Software Process 74
Learning Objectives 74
3.1 The Unified Process 76
3.2 Iteration and Incrementation
within the Object-Oriented
Paradigm 76
33 The Requirements Workflow 78
3.4 The Analysis Workflow 80
3.5 The Design Workflow 82
3.6 The Implementation Workflow 83
3.7 The Test Workflow 84

1.1 Historical Aspects 2
1.2 Economic Aspects 5
13 Maintenance Aspects 6
1.3.1 Classical and Modern Views
of Maintenance 9
1.3.2 The Importance of Postdelivery
Maintenance 10
1.4 Requirements, Analysis, and Design
Aspects 12
1.5 Team Development Aspects 15
1.6 Why There Is No Planning Phase 16
1.7 Why There Is No Testing Phase 16
1.8 Why There Is No Documentation
Phase 17
1.9 The Object-Oriented Paradigm 18
1.10 The Object-Oriented Paradigm in
Perspective 22
1.11 Terminology 23
1.12 Ethical Issues 26
Chapter Review 27
For Further Reading 27
Key Terms 28
Problems 29
References 30
PART A
SOFTWARE ENGINEERING
CONCEPTS 35
Chapter 2
Software Life-Cycle Models 37
Learning Objectives 37
2.1 Software Development in Theory 37
2.2 Winburg Mini Case Study 38
23 Lessons of the Winburg Mini Case Study 42 3.8

3.7.1 Requirements Artifacts 84
3.7.2 Aralysis Artifacts 84

3.7.3 Design Artifacts 85

3.7.4 Implementation Artifacts 85
Postdelivery Maintenance 87

xii Contents

39 Retirement 88
3.10 The Phases of the Unified Process 88
3.10.1 The Inception Phase 89
3.10.2 The Elaboration Phase 91
3.10.3 The Construction Phase 92
3.10.4 The Transition Phase 92
3. One- versus Two-Dimensional Life-Cycle
Models 92
3.12 Improving the Software Process 94
3.13 Capability Maturity Models 95
3.14 Other Software Process Improvement
Initiatives 98
3.15 Costs and Benefits of Software Process
Improvement 99
Chapter Review 101
For Further Reading 102
Key Terms 102
Problems 103
References 104
Chapter 4
Teams 107
Learning Objectives 107
4.1 Team Organization 107
4.2 Democratic Team Approach 109
4.2.1 Analysis of the Democratic Team
Approach 110
4.3 Classical Chief Programmer Team
Approach 110
4.3.1 The New York Times Project 112
4.3.2 Impracticality of the Classical Chief
Programmer Team Approach 113
4.4 Beyond Chief Programmer and
Democratic Teams 113
4.5 Synchronize-and-Stabilize Teams 117
4.6 Teams for Agile Processes 118
4.7 Open-Source Programming Teams 118
4.8 People Capability Maturity Model 119
4.9 Choosing an Appropriate Team

Organization 120
Chapter Review 121
For Further Reading 121
Key Terms 122
Problems 122
References 122

Chapter 5
The Tools of the Trade 124

Learning Objectives 124

5.1 Stepwise Refinement 124
5.1.1 Stepwise Refinement Mini Case
Study 125
5.2 Cost-Benefit Analysis 130
5.3 Divide-and-Conquer 132
54 Separation of Concerns 132
5.5 Software Metrics 133
56 CASE 134
5.7 Taxonomy of CASE 135
58 Scope of CASE 137
5.9 Software Versions 141
5.9.1 Revisions 141
5.9.2 Variations 142
5.10 Configuration Control 143
5.10.1 Configuration Control
during Postdelivery
Maintenance 145
5.10.2 Baselines 145
5.10.3 Configuration Control during
Development 146
51 Build Tools 146
5.12 Productivity Gains with CASE
Technology 147
Chapter Review 149
For Further Reading 149
Key Terms 150
Problems 150
References 151
Chapter 6
Testing 154
Learning Objectives 154
6.1 Quality Issues 155
6.1.1 Software Quality Assurance 156
6.1.2 Managerial Independence 156
6.2 Non-Execution-Based Testing 157

6.2.1 Walkthroughs 158

6.2.2 Managing Walkthroughs 158

6.2.3 Inspections 159

6.2.4 Comparison of Inspections
and Walkthroughs 161

6.3
6.4

6.5

6.6

6.7

6.2.5 Strengths and Weaknesses of
Reviews 162

6.2.6 Metrics for Inspections 162

Execution-Based Testing 162

What Should Be Tested? 163

6.4.1 Utility 164

6.4.2 Reliability 164

6.4.3 Robustness 165

6.4.4 Performance 165

6.4.5 Correctness 166

Testing versus Correctness Proofs 167

6.5.1 Example of a Correctness Proof 167

6.5.2 Correctness Proof Mini Case Study 171

6.5.3 Correctness Proofs and Sofiware
Engineering 172

Who Should Perform Execution-Based

Testing? 175

When Testing Stops 176

Chapter Review 176

For Further Reading 177

Key Terms 177

Problems 178

References 179

Chapter 7
From Modules to Objects 183

7.1
7.2

73

Learning Objectives 183

What Is a Module? 183

Cohesion 187

7.2.1 Coincidental Cohesion 187
7.2.2 Logical Cohesion 188

7.2.3 Temporal Cohesion 189

7.2.4 Procedural Cohesion 189

7.2.5 Communicational Cohesion 190
7.2.6 Functional Cohesion 190

7.2.7 Informational Cohesion 191
7.2.8 Cohesion Example 191
Coupling 192

7.3.1 Content Coupling 192

7.3.2 Common Coupling 193

7.3.3 Control Coupling 195

7.3.4 Stamp Coupling 195

7.3.5 Data Coupling 196

7.3.6 Coupling Example 197

7.3.7 The Importance of Coupling 198

Contents Xiii

7.4 Data Encapsulation 199
7.4.1 Data Encapsulation and
Development 201
7.4.2 Data Encapsulation and
Maintenance 202
7.5 Abstract Data Types 207
7.6 Information Hiding 209
7.7 Objects 211
7.8 Inheritance, Polymorphism, and Dynamic
Binding 215
7.9 The Object-Oriented Paradigm 217
Chapter Review 220
For Further Reading 221
Key Terms 221
Problems 221
References 222
Chapter 8

Reusability and Portability 225

8.1
8.2
83

8.4
8.5

8.6

8.7
8.8

8.9

Learning Objectives 225

Reuse Concepts 226

Impediments to Reuse 228

Reuse Case Studies 229

8.3.1 Raytheon Missile Systems
Division 230

8.3.2 European Space Agency 231

Objects and Reuse 232

Reuse during Design and

Implementation 232

8.5.1 Design Reuse 232

8.5.2 Application Frameworks 234

8.5.3 Design Patterns 235

8.5.4 Software Architecture 236

8.5.5 Component-Based Software
Engineering 237

More on Design Patterns 237

8.6.1 FLIC Mini Case Study 238

8.6.2 Adapter Design Pattern 239

8.6.3 Bridge Design Pattern 240

8.6.4 TIterator Design Pattern 241

8.6.5 Abstract Factory Design Pattern 241

Categories of Design Patterns 245

Strengths and Weaknesses of Design

Patterns 247

Reuse and the World Wide Web 248

xiv Contents

8.10
8.11

8.12
8.13

Reuse and Postdelivery Maintenance 249
Portability 250
8.11.1 Hardware Incompatibilities 250
8.11.2 Operating System

Incompatibilities 251
8.11.3 Numerical Software

Incompatibilities 251
8.11.4 Compiler Incompatibilities 253
Why Portability? 255
Techniques for Achieving Portability 256
8.13.1 Portable System Software 257
8.13.2 Portable Application Software 257
8.13.3 Portable Data 258
8.13.4 Model-Driven Architecture 259
Chapter Review 259
For Further Reading 260
Key Terms 261
Problems 261
References 263

CHAPTER 9
Planning and Estimating 268

9.1
9.2

9.3
9.4
9.5
9.6
9.7
9.8
9.9
9.10

9.11

Learning Objectives 268

Planning and the Software Process 268

Estimating Duration and Cost 270

9.2.1 Meirics for the Size of a Product 272

9.2.2 Techniques of Cost Estimation 275

9.2.3 Intermediate COCOMO 278

9.24 cocoMolIl 281

9.2.5 Tracking Duration and Cost
Estimates 282

Components of a Software Project

Management Plan 282

Software Project Management Plan

Framework 284

IEEE Sofiware Project Management

Plan 286

Planning Testing 288

Planning Object-Oriented Projects 289

Training Requirements 290

Documentation Standards 291

CASE Tools for Planning and

Estimating 292 '

Testing the Software Project Management

Plan 292

Chapter Review 292

For Further Reading 292
Key Terms 293
Problems 294
References 295

PART B
THE WORKFLOWS OF THE
SOFTWARE LIFE CYCLE 299

Chapter 10
Key Material from PartA 301

Learning Objective 301

10.1 Software Development: Theory versus
Practice 301

10.2 Iteration and Incrementation 302

10.3 The Unified Process 306

10.4 Workflow Overview 307

10.5 Teams 307

10.6 Cost-Benefit Analysis 308

10.7 Metrics 308

10.8 CASE 308

10.9 Versions and Configurations 309

10.10 Testing Terminology 309

10.11 Execution-Based and Non-Execution-
Based Testing 309

10.12 Modularity 310

10.13 Reuse 310

10.14 Software Project Management Plan 3
Chapter Review 311
Key Terms 311
Problems 312

Chapter 11
Requirements 313

Learning Objectives 313
11.1 Determining What the Client Needs
11.2 Overview of the Requirements
Workflow 314
11.3 Understanding the Domain 315
11.4 The Business Model 316
11.4.1 Interviewing 316
11.4.2 Other Techniques 317
11.4.3 Use Cases 318

10

313

11.5 Initial Requirements 319

11.6 Initial Understanding of the Domain:
The MSG Foundation Case Study 320

11.7 Initial Business Model: The MSG
Foundation Case Study 322

11.8 Initial Requirements: The MSG
Foundation Case Study 326

11.9 Continuing the Requirements Workflow:
The MSG Foundation Case Study 328

11.10 Revising the Requirements: The MSG
Foundation Case Study 330

11.11 The Test Workflow: The MSG Foundation
Case Study 338

11.12 The Classical Requirements
Phase 347

11.13 Rapid Prototyping 348

11.14 Human Factors 349

11.15 Reusing the Rapid Prototype 351

11.16 CASE Tools for the Requirements
Workflow 353

11.17 Metrics for the Requirements
Workflow 353

11.18 Challenges of the Requirements
Workflow 354
Chapter Review 355
For Further Reading 356
Key Terms 357
Case Study Key Terms 357
Problems 357
References 358

Chapter 12

Classical Analysis 360
Learning Objectives 360

12.1 The Specification Document 360

12.2 Informal Specifications 362
12.2.1 Correctness Proof Mini Case Study

Redux 363

12.3 Structured Systems Analysis 364

12.3.1 Sallys Software Shop Mini Case
Study 364

12.4 Structured Systems Analysis: The MSG
Foundation Case Study 372

12.5 Other Semiformal Techniques 373

12.6 Entity-Relationship Modeling 374

Contents xv

12.7 Finite State Machines 376
12.7.1 Finite State Machines: The Elevator
Problem Case Study 378
12.8 PetriNets 382
12.8.1 Petri Nets: The Elevator Problem Case
Study 385
129 Z 387
12.9.1 Z: The Elevator Problem Case
Study 388
12.9.2 Analysis of Z 390
12.10 Other Formal Techniques 392
12.11 Comparison of Classical Analysis
Techniques 392
12.12 Testing during Classical Analysis 393
12.13 CASE Tools for Classical Analysis 394
12.14 Metrics for Classical Analysis 395
12.15 Software Project Management Plan: The
MSG Foundation Case Study . 395
12.16 Challenges of Classical Analysis 396
Chapter Review 396
For Further Reading 397
Key Terms 398
Case Study Key Terms 398
Problems 398
References 400

Chapter 13
Object-Oriented Analysis 404

Learning Objectives 404

13.1 The Analysis Workflow 405

13.2 Extracting the Entity Classes 406

13.3 Object-Oriented Analysis: The Elevator
Problem Case Study 407

13.4 Functional Modeling: The Elevator
Problem Case Study 407

13.5 Entity Class Modeling: The Elevator
Problem Case Study 410
13.5.1 Noun Extraction 411
13.5.2 CRC Cards 413

13.6 Dynamic Modeling: The Elevator Problem
Case Study 414

13.7 The Test Workflow: Object-Oriented
Analysis 417

13.8 Extracting the Boundary and Control
Classes 424

xvi Contents

13.9

13.10

13.11

13.12

13.13

13.14

13.15

13.16

13.17

13.18

13.19
13.20

13.21

13.22

The Initial Functional Model: The MSG
Foundation Case Study 425

The Initial Class Diagram: The MSG
Foundation Case Study 428

The Initial Dynamic Model: The MSG
Foundation Case Study 430

Revising the Entity Classes: The MSG
Foundation Case Study 432

Extracting the Boundary Classes: The
MSG Foundation Case Study 434
Extracting the Control Classes: The MSG
Foundation Case Study 435

Use-Case Realization: The MSG
Foundation Case Study 435

13.15.1 Estimate Funds Available
for Week Use Case 436
Manage an Asset Use Case 442
Update Estimated Annual
Operating Expenses

Use Case 446

13.154 Produce a Report UseCase 449
Incrementing the Class Diagram: The
MSG Foundation Case Study 454

The Test Workflow: The MSG Foundation
Case Study 456

The Specification Document in the Unified
Process 456

More on Actors and Use Cases 457
CASE Tools for the Object-Oriented
Analysis Workflow 458

Metrics for the Object-Oriented Analysis
Workflow 459

Challenges of the Object-Oriented
Analysis Workflow 459

Chapter Review 460

For Further Reading 461

Key Terms 462

Problems 462

References 463

13.15.2
13.15.3

Chapter 14
Design 465

14.1
14.2

Learning Objectives 465
Design and Abstraction 466
Operation-Oriented Design 466

14.3 Data Flow Analysis 467
14.3.1 Mini Case Study Word Counting 468
14.3.2 Data Flow Analysis Extensions 473
14.4 Transaction Analysis 473
14.5 Data-Oriented Design 475
14.6 Object-Oriented Design 476
14.7 Object-Oriented Design: The Elevator
Problem Case Study 477
14.8 Object-Oriented Design: The MSG
Foundation Case Study 481
14.9 The Design Workflow 483
14.10 The Test Workflow: Design 487
14.11 The Test Workflow: The MSG Foundation
Case Study 488
14.12 Formal Techniques for Detailed Design 488
14.13 Real-Time Design Techniques 488
14.14 CASE Tools for Design 490
14.15 Metrics for Design 490
14.16 Challenges of the Design Workflow 491
Chapter Review 492
For Further Reading 493
Key Terms 493
Problems 494
References 495
Chapter 15

Implementation 498

151
15.2
153

15.4
15.5
15.6

Learning Objectives 498

Choice of Programming Language 498
Fourth-Generation Languages 501
Good Programming Practice 504
15.3.1 Use of Consistent and Meaningful
Variable Names 504

The Issue of Self-Documenting

Code 505

Use of Parameters 507

Code Layout for Increased
Readability 507
15.3.5 Nested if Statements
Coding Standards 509
Code Reuse 510
Integration 510

15.6.1 Top-down Integration 511
15.6.2 Bottom-up Integration 513
15.6.3 Sandwich Integration 513

15.3.2

15.3.3
15.3.4

507

