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This book is dedicated to
WERNER FENCHEL



Preface

Convexity has been increasingly important in recent years in the study
of extremum problems in many areas of applied mathematics. The purpose
of this book is to provide an exposition of the theory of convex sets and
functions in which applications to extremum problems play the central
role.

Systems of inequalities, the minimum or maximum of a convex function
over a convex set, Lagrange multipliers, and minimax theorems are among
the topics treated, as well as basic results about the structure of convex
sets and the continuity and differentiability of convex functions and saddle-
functions. Duality is emphasized throughout, particularly in the form of
Fenchel’s conjugacy correspondence for convex functions.

Much new material is presented. For example, a generalization of linear
algebra is developed in which “convex bifunctions” are the analogues of
linear transformations, and “‘inner products” of convex sets and functions
are defined in terms of the extremal values in Fenchel’s Duality Theorem.
Each convex bifunction is associated with a generalized convex program,
and an adjoint operation for bifunctions that leads to a theory of dual
programs is introduced. The classical correspondence between linear
transformations and bilinear functionals is extended to a correspondence
between convex bifunctions and saddle-functions, and this is used as the
main tool in the analysis of saddle-functions and minimax problems.

Certain topics which might properly be regarded as part of ‘“‘convex
analysis,” such as fixed-point theorems, have been omitted, not because
they lack charm or applications, but because they would have required
technical developments somewhat outside the mainstream of the rest of
the book.

In view of the fact that economists, engineers, and others besides pure
mathematicians have become interested in convex analysis, an attempt has
been made to keep the exposition on a relatively elementary technical
level, and details have been supplied which, in a work aimed only at a
mathematical in-group, might merely have been alluded to as “‘exercises.”
Everything has been limited to R", the space of all n-tuples of real numbers,
even though many of the results can easily be formulated in a broader
setting of functional analysis. References to generalizations and extensions
are collected along with historical and bibliographical comments in a
special section at the end of the book, preceding the bibliography itself.

As far as technical prerequisites are concerned, the reader should be
able to get by, for the most part, with a sound knowledge of linear algebra
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viii PREFACE

and elementary real analysis (convergent sequences, continuous functions,
open and closed sets, compactness, etc.) as pertains to the space R".
Nevertheless, while no actual familiarity with any deeper branch of abstract
mathematics is required, the style does presuppose a certain ‘““mathematical
maturity” on the part of the reader.

A section of remarks at the beginning of the book describes the con-
tents of each part and outlines a selection of material which would be
appropriate for an introduction to the subject.

This book grew out of lecture notes from a course 1 gave at Princeton
University in the spring of 1966. In a larger sense, however, it grew out of
lecture notes from a similar course given at Princeton fifteen years earlier
by Professor Werner Fenchel of the University of Copenhagen. Fenchel's
notes were never published, but they were distributed in mimeographed
form, and they have served many researchers long and well as the main,
and virtually the only, reference for much of the theory of convex functions.
They have profoundly influenced my own thinking, as evidenced, to cite
just one aspect, by the way conjugate convex functions dominate much of
this book. It is highly fitting, therefore, that this book be dedicated to
Fenchel, as honorary co-author. ‘ ‘

I would like to express my deep thanks to Professor A. W. Tucker of
Princeton University, whose encouragement and support has been a
mainstay since student days. It was Tucker in fact who suggested the title
of this book. Further thanks are due to Dr. Torrence D. Parsons, Dr.
Norman Z. Shapiro, and Mr. Lynn McLinden, who looked over the man-
uscript and gave some very helpful suggestions. T am also grateful to my
students at Princeton and the University of Washington, whose comments
on the material as it was taught led to many improvements of the pres-
entation, and to Mrs. Janet Parker for her patient and very competent
secretarial assistance.

Preparation of the 1966 Princeton lecture notes which preceded this
book was supported by the Office of Naval Research under grant NONR
1858(21), project NR-047-002. The Air Force Office of Scientific Research
subsequently provided welcome aid at the University of Washington in
the form of grant AF-AFOSR-1202-67, without which the job of writing
the book itself might have dragged on a long time, beset by interruptions.

R.T.R.



Introductory Remarks: A Guide
for the Reader

This book is not really meant to be read from cover to cover, even if
there were anyone ambitious enough to do so. Instead, the material is
organized as far as possible by subject matter; for example, all the pertinent
facts about relative interiors of convex sets, whether of major or minor
importance, are collected in one place (§6) rather than derived here and there
in the course of other developments. This type of organization may make it
easier to refer to basic results, at least after one has some acquaintance with
the subject, yet it can get in the way of a beginner using the text as an intro-
duction. Logical development is maintained as the book proceeds, but in
many of the earlier sections there is a mass of lesser details toward the
end in which one could get bogged down.

Nevertheless, this book can very well be used as an introduction if one
makes an appropriate selection of material. The guidelines are given below,
where it is described just which results in each section are really essential
and which can safely be skipped over, at least temporarily, without causing
a gap in proof or understanding.

Part I: Basic Concepts

Convex sets and convex functions are defined here, and relationships
_between the two concepts are discussed. The emphasis is on establishing
criteria for convexity. Various useful examples are given, and it is shown
how further examples can be generated from these by means of operations
such as addition or taking convex hulls.

The fundamental idea to be understood is that the convex functions on
R™ can be identified with certain convex subsets of R"*! (their epigraphs),
while the convex sets in R* can be identified with certain convex functions
on R* (their indicators). These identifications make it easy to pass back
and forth between a geometric approach and an analytic approach.
Ordinarily, in dealing with functions one thinks geometrically in terms of
the graphs of the functions, but in the case of convex functions pictures
of epigraphs should be kept in mind instead.

Most of the material, though elementary, is basic to the rest of the book,
but some parts should be left out by a reader who is encountering the
subject for the first time. Although only linear algebra is involved in §1

xi



Xii INTRODUCTORY REMARKS

(Affine Sets), the concepts may not be entirely familiar; §1 should therefore
be perused up through the definition of barycentric coordinate systems
(preceding Theorem 1.6) as background for the introduction of convexity.
The remainder of §1, concerning affine transformations, is not crucial to a
beginner’s understanding. All of §2 (Convex Sets and Cones) is essential
and the first half of §3, but the second half of §3, starting with Theorem 3.5,
deals with operations of minor significance. Very little should be skipped
in §4 (Convex Functions) except some of the examples. However, the end
of §5 (Functional Operations), following Theorem 5.7, is not needed in any
later section.

Part II: Topological Properties

The properties of convexity considered in Part | are primarily algebraic:
it is shown that convex sets and functions form classes of objects which
are preserved under numerous operations of combination and generation.
In Part II, convexity is considered instead in relation to the topological
notions of interior, closure, and continuity.

The remarkably uncomplicated topological nature of convex sets and
functions can be traced to one intuitive fact: if a line segment in a convex
set C has one endpoint in the interior of C and the other endpoint on the
boundary of C, then all the intermediate points of the line segment lie in
the interior of C. A concept of “‘relative” interior can be introduced, so
that this fact can be used as a basic tool even in situations where one has to
deal with configurations of convex sets whose interiors are empty. This is
discussed in §6 (Relative Interiors of Convex Sets). The principal results
which every student of convexity should know are embodied in the first
four theorems of §6. The rest of §6, starting with Theorem 6.5, is devoted
mainly to formulas for the relative interiors of convex sets constructed
from other convex sets in various ways. A number of useful results are
established (particularly Corollaries 6.5.1 and 6.5.2, which are cited often
in the text, and Corollary 6.6.2, which is employed in the proof of an
important separation theorem in §11), but these can all be neglected
temporarily and referred to as the need arises.

In §7 (Closures of Convex Functions) the main topic is lower semi-
continuity. This property is in many ways more important than continuity
in the case of convex functions, because it relates directly to epigraphs:
a function is lower semi-continuous if and only if its epigraph is closed.
A convex function which is not already lower semi-continuous can be made
so simply by redefining its values (in a uniquely determined manner) at
certain boundary points of its effective domain. This leads to the notion
of the closure operation for convex functions, which corresponds to the
closure operation for epigraphs (as subsets of R*+1) when the functions are -
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proper. All of §7, with the exception of Theorem 7.6, is essential if one is to
understand what follows.

All of §8 (Recession Cones and Unboundedness) is also needed in the
long run, although the need is not as ubiquitous as in the case of §6 and
§7. The first half of §8 elucidates the idea that unbounded convex sets are
just like bounded convex sets, except that they have certain “points at
Jnfinity.” The second half of §8 applies this idea to epigraphs to obtain
results about the growth properties of convex functions. Such properties
are important in formulating a number of basic existence theorems
scattered throughout the book, the first: ones occurring in §9 (Some
Closedness Criteria).

The question which §9 attempts to answer is this: when is the image of a
closed convex set under a linear transformation closed ? 1t turns out that
this question is fundamental in investigations of the existence of solutions
to various extremum problems. The principal results of §9 are given in
Theorems 9.1 and 9.2 (and their corollaries). The reader would do well,
however, to skip §9 entirely on the first encounter and return to it later, if
desired, in connection with applications in §16.

Only the first theorem of §10 (Continuity of Convex Functions) is basic
to convex analysis as a whole. The fancier continuity and convergence
theorems are a culmination in themselves. They are used only in §24 and
§25 to derive continuity and convergence theorems for subdifferentials
and gradient mappings of convex functions, and in §35 to derive snmnlar
results in the case of saddle-functions.

Part IIl: Duality Correspondences

Duality between points and hyperplanes has an important role to play
in much of analysis, but nowhere perhaps is the role more remarkable
than in convex analysis. The basis of duality in the theory of convexity is,
from a geometric point of view, the fact that a closed convex set is the
intersection of all the closed half-spaces which contain it. From the point
of view of functions, however, it is the fact that a closed convex function
is the pointwise supremum of all the affine functions which minorize it.
These two facts are equivalent when regarded in terms of epigraphs, and a
geometric formulation is usually preferable for the sake of intuition, but
in this case both formulations are important. The second formulation of
the basis of duality has the advantage that it leads directly to a symmetric
one-to-one duality correspondence among closed convex functions, the
conjugacy correpsondence of Fenchel.

Conjugacy contains, as a special case in a certain sense, a symmetric
one-to-one correspondence among closed convex cones (polarity), but
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it has no symmetric counterpart in the class of general closed convex sets.
The analogous correspondence in the latter context is between convex
sets on the one hand and positively homogeneous convex functions (their
support functions) on the other. For this reason it is often better in applica-
tions, as far as duality is-concerned, to express a given situation in terms of
convex functions, rather than convex sets. Once this is done, geometric
reasoning can still be applied, of course, to epigraphs.

The foundations for the theory of duality are laid in §11 (Separation
Theorems). All of the material in this section, except Theorem 11.7, is
essential. In §12 (Conjugates of Convex Functions), the conjugacy corre-
spondence is defined, and a number of examples of corresponding func-
tions are given. Theorems 12.1 and 12.2 are the fundamental results which
should be known; the rest of §12 is dispensible.

Conjugacy is applied in §13 (Support Functions) to produce results
about the duality between convex sets and positively homogeneous convex
functions. The support functions of the effective domain and level sets of a
convex function f are calculated in terms of the conjugate function f*
and its recession function. The main facts are stated in Theorems 13.2,
13.3, and 13.5, the last two presupposing familiarity with §8. The other
theorems, as well as all the corollaries, can be skipped over and referred to
if and when they are needed.

In §14 (Polars of Convex Sets), the conjugacy correspondence for con-
vex functions is specialized to the polarity correspondence for convex
cones, whereupon the latter is generalized to the polarity correspondence
for arbitrary closed convex sets containing the origin. Polarity of convex
cones has several applications elsewhere in this book, but the more general
polarity is not mentioned subsequently, except in §15 (Polars of Convex
Functions), where its relationship with the theory of norms is discussed.
The purpose of §15, besides the development of Minkowski’s duality
correspondence for norms and certain of its generalizations, is to provide
(in Theorem 15.3 and Corollary 15.3.1) further examples of conjugate con-
vex functions. However, of all of §14 and §15, it would suffice, as long as
one was not specifically interested in approximation problems, to read
merely Theorem 14.1.

The theorems of §16 (Dual Operations) show that the various functional
operations in §5 fall into dual pairs with respect to the conjugacy corre-
spondence. The most significant result is Theorem 16.4, which describes
the duality between addition and infimal convolution of convex functions.
This result has important consequences for systems of inequalities (§21)
and the calculus of subgradients (§23), and therefore for the theory of
extremum problems in Part VI. The second halves of Theorems 16.3,
16.4, and 16.5 (which give conditions under which the respective minima
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are attained and the closure operation is not needed in the duality formulas)
depend on §9. This much of the material could be omitted on a first reading
of §16, along with Lemma 16.2 and all corollaries.

Part 1V: Representation and Inequalities

The objective here is to obtain results about the representation of convex
sets as convex hulls of sets of points and directions, and to apply these
results to the study of systems of linear and nonlinear inequalities. Most
of the material concerns refinements of convexity theory which take special
advantage of dimensionality or the presence of some degree of linearity.
The reader could skip Part IV entirely without jeopardizing his under-
standing of the remainder of this book. Or, as a compromise, only the more
fundamental material in Part IV, as indicated below, could be covered.

The role of dimensionality in the generation of convex hulls is explored in
§17 (Carathéodory’s Theorem), the principal facts being given in Theorems
17.1 and 17.2. Problems of representing a given convex set in terms
of extreme points, exposed points, extreme directions, exposed directions,
and tangent hyperplanes are taken up in §18 (Extreme Points and Faces
of Convex Sets). All of §18 is put to use in §19 (Polyhedral Convexity);
applications also occur in the study of gradients (§25) and in the maximiza-
tion of convex functions (§32). The most important results in §19 are
Theorems 19.1, 19.2, 19.3, and their corollaries.

In §20 (Some Applications of Polyhedral Convexity), it is shown how
certain general theorems of convex analysis can be strengthened in the
case where some, but not necessarily all, of the convex sets or functions
involved are polyhedral. Theorems 20.1 and 20.2 are used in §21 to establish
relatively difficult refinements of Helly’s Theorem and certain other
results which are applicable in §27 and §28 to the existence of Lagrange
multipliers and optimal solutions to convex programs. Theorem 20.1
depends on §9, although Theorem 20.2 does not. However, it is possible
to understand the fundamental results of §21 (Helly’s Theorem and Systems
of Inequalities) and their proofs without knowledge of §20, or even of §18
or §19. In this case one should simply omit Theorems 21.2, 21.4, and
21.5.

Finite systems of equations and linear inequalities, weak or strict, are
the topic in §22 (Linear Inequalities). The results are special, and they are
not invoked anywhere else in the book. At the beginning, various facts are
stated as corollaries of fancy theorems in §21, but then it is demonstrated
that the same special facts can be derived, along with some improvements,
by an elementary and completely independent method which uses only
linear algebra and no convexity theory.
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Part V: Differential Theory

Supporting hyperplanes to convex sets can be employed in situations
where tangent hyperplanes, in the sense of the classical theory of smooth
surfaces, do not exist. Similarly, subgradients of convex functions, which
correspond to supporting hyperplanes to epigraphs rather than tangent
hyperplanes to graphs, are often useful where ordinary gradients do not
exist.

The theory of subdifferentiation of convex functions, expounded in §23
(Directional Derivatives and Subgradients), is a fundamental tool in the
analysis of extremum problems, and it should be mastered before proceed-
ing. Theorems 23.6, 23.7, 23.9, and 23.10 may be omitted, but one should
definitely be aware of Theorem 23.8, at least in the non-polyhedrat case
for which an alternative and more elementary proof is given. Most of §23 is
independent of Part IV,

The main result about the relationship between subgradients and ordi-
nary gradients of convex functions is established in Theorem 25.1, which
can be read immediately following §23. No other result from §24, §25,
or §26 is specifically required elsewhere in the book, except in §35, where
analogous theorems are proved for saddle-functions. The remainder of
Part V thus serves its own purpose.

In §24 (Differential Continuity and Monotonicity), the elementary theory
of left and right derivatives of closed proper convex functions of a single
variable is developed. It is shown that the graphs of the subdifferentials of
such functions may be characterized as ‘“‘complete non-decreasing curves.”
Continuity and monoticity properties in the one-dimensional case are then
generalized to the n-dimensional case. ~

Aside from the theorem already referred to above, §25 (Differentiability
of Convex Functions) is devoted mainly to proving that, for a finite
convex function on an open set, the ordinary gradient mapping exists
almost everywhere and is continuous. The question of when the gradient
mapping comprises the entire subdifferential mapping, and when it is
actually one-to-one, is taken up in §26 (The Legendre Transformation).
The central purpose of §26 is to explain the extent to which conjugate
convex functions can, in principle, be calculated in a classical manner by
inverting a gradient mapping. The duality between smoothness and strict
convexity is also discussed. The development in §25 and §26 depends to
some extent on §18, but not on any sections of Part 1V following §18.

Part VI: Constrained Extremum Problems

The theory of extremum problems is, of course, the source of motivation
for many of the results in this book. It is in §27 (The Minimum of a Convex
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Function) that applications to this theory are begun in a systematic way.
The stage is set by Theorem 27.1, which summarizes some pertinent facts
proved in earlier sections. All the theorems of §27 concern the manner in
which a convex function attains its minimum relative to a given convex
set, and all should be included in a first reading, except perhaps for refine-
ments which take advantage of polyhedral convexity.

Problems in which a convex function is minimized subject to a finite
system of convex inequalities are studied in §28 (Ordinary Convex Pro-
grams and Lagrange Multipliers). The emphasis is on the existence, inter-
pretation, and characterization of certain vectors of Lagrange muitipliers,
called Kuhn-Tucker vectors. The text may be simplified somewhat by
deleting the provisions for linear equation constraints, and Theorem 28.2
may be replaced by its special case Corollary 28.2.1 (which has a much
easier proof), but beyond this nothing other than examples ought to be
omitted. :

The theory of Lagrange multipliers is broadened and in some ways
sharpened in §29 (Bifunctions and Generalized Convex Programs). The
concept of a convex bifunction, which can be regarded as an extension of
that of a linear transformation, is used to construct a theory of perturba-
tions of minimization problems. Generalized Kuhn-Tucker vectors measure
the effects of the perturbations. Theorems 29.1, 29.3, and their corollaries
contain all the facts needed in the sequel.

In §30 (Adjoint Bifunctions and Dual Programs) the duality theory of
extremum problems is set forth. Practically everything up through Theorem
30.5 is fundamental, but the remainder of §30 consists of examples and
may be truncated as desired. Duality theory is continued in §31 (Fenchel’s
Duality Theorem). The primary purpose of §31 is to furnish additional
examples interesting for their applications. Later sections do not depend on
the material in §31. except for §38.

Results of a rather different character are described in §32 (The Maximum
of a Convex Function). The proofs of these results involve none of the
preceding sections of Part VI, but familiarity with §18 and §19 is required.
No subsequent reference is made to §32.

Part VII: Saddle-functions and Minimax Theory

Saddle-functions are functions which are convex in some variables and
concave in others, and the extremum problems naturally associated with
them involve “minimaximization,” rather than simple minimization or
maximization. The theory of such minimax problems can be developed by
much the same approach as in the case of minimization of convex functions.
It turns out that the general minimax problems for (suitably regularized)
saddle-functions are precisely the Lagrangian saddle-point problems



Xviit INTRODUCTORY REMARKS

associated with generalized (closed) convex programs. Understandably,
therefore, convex bifunctions are central to the discussion of saddle-
functions, and the reader should not proceed without already being
familiar with the basic ideas in §29 and §30. '

Saddle-functions on R™ x R* correspond to convex bifunctions from
R™ to R™ in much the same way that bilinear functions on R™ x R" cor-
respond to linear transformations from R™ to R*. This is the substance of
§33 (Saddle-functions). In §34 (Closures and Equivalence Classes), certain
closure operations for saddle-functions similar to the one for convex
functions are studied. It is shown that each finite saddle-function defined on
a product of convex sets in R™ x R" determines a unique equivalence
class of closed saddle-functions defined on all of R” x R", but one does
not actually have to read up on the latter fact (embodied in Theorems
34.4 and 34.5) before passing to minimax theory itself.

The results about saddle-functions proved in §35 (Continuity and Differ-
entiability) are mainly analogues or extensions of results about convex
functions in §10, §24, and §25, and they are not a prerequisite for what
follows.

Saddle-points and saddle-values are discussed in §36 (Minimax
Problems). It is then explained how the study of these can be reduced to the
study of convex and concave programs dual to each other. Existence theo-
rems for saddle-points and saddle-values are then derived in §37 (Conjugate
Saddle-functions and Minimax Theorems) in terms of a conjugacy corre-
spondence for saddle-functions and the ““inverse’" operation for bifunctions.

Part VIII: Convex Algebra

The analogy between convex bifunctions and linear transformations,
which features so prominently in Parts VI and VII, is pursued further in
§38 (The Algebra of Bifunctions). ‘“‘Addition™ and *“‘multiplication” of
bifunctions are studied in terms of a generalized notion of inner product
based on Fenchel's Duality Theorem. It is a remarkable and non-trivial
fact that such natural operations {or bifunctions are preserved, as in linear
algebra, when adjoints are taken.

The results about bifunctions in §38 are specialized in §39 (Convex
Processes) to a class of convex-set-valued mappings which are even more
analogous to linear transformations.



