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PREFACE

In 1975 I gave a course in partial differential equations (PDE) at the Uni-
versity of Washington to an audience consisting of graduate students who
had taken the standard first-year analysis courses but who had little back-
ground in PDE. Accordingly, it focused on basic classical results in PDE
but aimed in the direction of the recent developments and made fairly free
use of the techniques of real and complex analysis. The roughly polished
notes for that course constituted the first edition of this book, which has
enjoyed some success for the past two decades as a “modern” introduction
to PDE. From time to time, however, my conscience has nagged me to
make some revisions — to clean some things up, add more exercises, and
include some material on pseudodifferential operators.

Meanwhile, in 1981 I gave another course in Fourier methods in PDE
for the Programme in Applications of Mathematics at the Tata Institute
for Fundamental Research in Bangalore, the notes for which were published
in the Tata Lectures series under the title Lectures on Partial Differential
Equations. They included applications of Fourier analysis to the study of
constant coefficient equations (especially the Laplace, heat, and wave equa-
tions) and an introduction to pseudodifferential operators and Calderén-
Zygmund singular integral operators. These notes were found useful by a
number of people, but they went out of print after a few years.

Out of all this has emerged the present book. Its intended audience is
the same as that of the first edition: students who are conversant with real
analysis (the Lebesgue integral, L? spaces, rudiments of Banach and Hilbert
space theory), basic complex analysis (power series and contour integrals),
and the big theorems of advanced calculus (the divergence theorem, the
implicit function theorem, etc.). Its aim is also the same as that of the first
edition: to present some basic classical results in a modern setting and
to develop some aspects of the newer theory to a point where the student
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will be equipped to read more advanced treatises. It consists essentially of
the union of the first edition and the Tata notes, with the omission of the
L? theory of singular integrals (for which the reader is referred to Stein’s
classic book [45]) and the addition of quite a few exercises.

Apart from the exercises, the main substantive changes from the first
edition to this one are as follows.

¢ §1F has been expanded to include the full Malgrange-Ehrenpreis theo-
rem and the relation between smoothness of fundamental solutions and
hypoellipticity, which simplifies the discussion at a few later points.

o Chapter 2 now begins with a brief new section on symmetry properties
of the Laplacian.

¢ The discussion of the equation Au = f in §2C (formerly §2B) has been
expanded to include the full Holder regularity theorem (and, as a by-
product, the continuity of singular integrals on Holder spaces).

¢ The solution of the Dirichlet problem in a half-space (§2QG) is now done
in a way more closely related to the preceding sections, and the Fourier-
analytic derivation has been moved to §4B.

o | have corrected a serious error in the treatment of the two-dimensional
case in §3E. I am indebted to Leon Greenberg for sending me an analysis
of the error and suggesting Proposition (3.36b) as a way to fix it.

o The discussion of functions of the Laplacian in the old §4A has been
expanded and given its own section, §4B.

o Chapter 5 contains a new section (§5D) on the Fourier analysis of the
wave equation.

o The first section of Chapter 6 has been split in two and expanded to
include the interpolation theorem for operators on Sobolev spaces and
the local coordinate invariance of Sobolev spaces.

¢ A new section (§6D) has been added to present Hormander’s charac-
terization of hypoelliptic operators with constant coefficients.

o Chapter 8, on pseudodifferential operators, is entirely new.

In addition to these items, I have done a fair amount of rewriting in
order to improve the exposition. I have also made a few changes in notation
— most notably, the substitution of {f | g) for (f, g) to denote the Hermitian
inner product [ fg, as distinguished from the bilinear pairing (f,9) = [ fg.
(I have sworn off using parentheses, perhaps the most overworked symbols
in mathematics, to denote inner products.) I call the reader’s attention to
the existence of an index of symbols as well as a regular index at the back
of the book.
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The bias toward elliptic equations in the first edition is equally evident
here. I feel a little guilty about not including more on hyperbolic equations,
but that is a subject for another book by another author.

The discussions of elliptic regularity in §6C and §7F and of Garding’s
inequality in §7D may look a little old-fashioned now, as the machinery of
pseudodifferential operators has come to be accepted as the “right” way
to obtain these results. Indeed, 1 rederive (and generalize} Garding's in-
equality and the local regularity theorem by this method in §8F. However,
I think the “low-tech” arguments in the earlier sections are also worth re-
taining. They provide the quickest proofs when one starts from scratch,
and they show that the results are really of a fairly elementary nature.

I have revised and updated the bibliography, but it remains rather
short and quite unscholarly. Wherever possible, I have preferred to give
references to expository books and articles rather than to research papers,
of which only a few are cited.

In the preface to the first edition I expressed my gratitude to my teach-
ers J. J. Kohn and E. M. Stein, who influenced my point of view on much
of the material contained therein. The same sentiment applies equally to
the present work.

Gerald B. Folland
Seattle, March 1995
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Chapter O
PRELIMINARIES

The purpose of this chapter is to fix some terminology that will be used
throughout the book, and to present a few analytical tools which are not
included in the prerequisites. It is intended mainly as a reference rather
than as a systematic text.

A. Notations and Definitions

Points and sets in Euclidean space

R will denote the real numbers, C the complex numbers. We will be
working in R”, and n will always denote the dimension. Points in R will
generally be denoted by z,y,&,n; the coordinates of = are (z1,...,zn).
Occasionally xy, z2, ... will denote a sequence of points in R™ rather than
coordinates, but this will always be clear from the context. Once in a while
there will be some confusion as to whether (z;,...,z,) denotes a point in
R™ or the n-tuple of coordinate functions on R™. However, it would be
too troublesome to adopt systematically a more precise notation; readers
should consider themselves warned that this ambiguity will arise when we
consider coordinate systems other than the standard one.

If U is a subset of R™, U will denote its closure and 8U its boundary.
The word domain will be used to mean an open set Q C R™, not necessarily
connected, such that Q = 8(R™\ ). (That is, all the boundary points of
Q} are “accessible from the outside.”)

If z and y are points of R” or ", we set

n
x'y=2$jyj‘
1
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so the Euclidean norm of z is given by
lz| = (z - %)% (= (z-z)"?if z is real.)

We use the following notation for spheres and (open) balls: if z € R™ and
r >0,

Se(z) = {y €R" |z —y| =r},

B (z)={yeR™: [z —y| < r}.

Measures and integrals

The integral of a function f over a subset Q of R™ with respect to
Lebesgue measure will be denoted by fn f(z)dz or simply by fn f. Ifno
subscript occurs on the integral sign, the region of integration is understood
to be R™. If S is a smooth hypersurface (see the next section), the natural
Euclidean surface measure on S will be denoted by do; thus the integral of
fover Sis [g f(z)da(z), or [, fdo, or just Js f. The meaning of do thus
depends on S, but this will cause no confusion.

If f and g are functions whose product is integrable on R™, we shall
sometimes write

tha) = [ 13 ra)= [ 13

where § is the complex conjugate of g. The Hermitian pairing (f|g) will
be used only when we are working with the Hilbert space L? or a variant
of it, whereas the bilinear pairing (f, g) will be used more generally.

Multi-indices and derivatives

An n-tuple @ = (ay,... a,) of nonnegative integers will be called a
multi-index. We define

n
|| = E oj, al = aylas! - ay!,
1
and for z € R",
a ay [« 33 o
FAEE T TRERRE P

We will generally use the shorthand
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for derivatives on R”™. Higher-order derivatives are then conveniently ex-
pressed by multi-indices:

n o 'C'I
3°=II(§L) =—7;L*TT
! x dey* - -Ozn
Note in particular that if a = 0, 8% is the identity operator. With this
notation, it would be natural to denote by du the n-tuple of functions
(614, ...,0,u) when u is a differentiable function; however, we shall use
instead the more commeon notation

Vu = (01y,. .., 00u).

For our purposes, a vector field on a set € R” is simply an R™
valued function on Q. If F is a vector field on an open set 2, we define the
directional derivative 8r by

Op=F -V,

that is, if u is a differentiable function on ,
Oru(z) = F(z) - Vu(z) = Z Fj(z)0;u(z).
1

Function spaces

If 2 is a subset of R™, C(£2) will dente the space of continuous complex-
valued functions on Q (with respect to the relative topology on Q). If  is
open and k is a positive integer, C*(Q) will denote the space of functions
possessing continuous derivatives up to order k on €, and C*(Q0) will denote
the space of all u € C*(§2) such that #%u extends continuously to the
closure § for 0 < |a| < k. Also, we set C(2) = N C¥(Q) and C=(7) =
N c*@).

We next define the Holder or Lipschitz spaces C*(R2), where Q is an
open set and 0 < a < 1. (Here a is a real number, not a multi-index; the
use of the letter “a” in both these contexts is standard.) C'*(£) is the space
of continuous functions on (2 that satisfy a locally uniform Hélder condition
with exponent «. That is, u € C*(Q) if and only if for any compact V C Q
there is a constant ¢ > 0 such that for all y € R™ sufficiently close to 0,

sup |u(z + y) ~ u(z)] < cly|®.
zeV
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(Note that C*(Q2) C C*(Q) for all a < 1, by the mean value theorem.) If
k is a positive integer, C*+*(Q) will denote the set of all u € C*() such
that 8w € C*() for all muli-indices A with |#] = k (or equivalently, with
|B| < k; the lower-order derivatives are automatically in C1(Q) c C%(Q).).

The support of a function u, denoted by supp u, is the complement of
the largest open set on which u = 0. If & C R"™, we denote by C>°(£2) the
space of all C* functions on R™ whose support is compact and contained
in Q. (In particular, if Q is open such functions vanish near 9.)

The space C*(R™) will be denoted simply by C*. Likewise for C*°,
C*te and C°.

If @ C R” is open, a function u € C*(Q) is said to be analytic in
if 1t can be expanded in a power series about every point of Q. That is,
u is analytic on § if for each z € Q there exists » > 0 such that for all

y € Br(x), pu(z)
u(z
u(y) = ——=(y — z)°,
) |Z|>j =~y ~2)
the series being absolutely and uniformly convergent on B.(z). When re-
ferring to complex-analytic functions, we shall always use the word holo-
morphic.

The Schwartz class 8 = 8§(IR") is the space of all C* functions on R"
which, together with all their derivatives, die out faster than any power of
z at infinity. That is, u € 8 if and only if © € C*® and for all multi-indices
a and g,

sup |z%0% u(z)| < oco.
TeR™

Big O and little o

We occasionally employ the big and little o notation for orders of mag-
nitude. Namely, when we are considering the behavior of functions in a
neighborhood of a point a (which may be o), O(f(z)) denotes any func-
tion g(z) such that |g(z)| < C|f(z)| for z near a, and o(f(z)) denotes any
function h(z) such that h(z)/f(z) — 0 as z — a.

B. Results from Advanced Calculus

A subset S of R" is called a hypersurface of class C* (1 < k < co) if for
every &o € S there is an open set V' C R™ containing £y and a real-valued
function ¢ € C*(V) such that V¢ is nonvanishing on SNV and

SNV ={zeV:¢)=0}.
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In this case, by the implicit function theorem we can solve the equation
#(z) = 0 near zo for some coordinate z; — for convenience, say i = n —
to obtain

Th = P(T1,...,Tn-1)

for some C* function ¥. A neighborhood of zg in S can then be mapped
to a piece of the hyperplane z, = 0 by the C* transformation

z— (z', ¢, — Y(z')) (' = (#1,...,Tn-1)).

This same neighborhood can also be represented in parametric form as
the image of an open set in R"™! (with coordinate z’) under the map

' — (2, ¢(z')).

z' may be thought of as giving local coordinates on S near .

Similar considerations apply if “C*” is replaced by “analytic.”

With S, V, ¢ as above, the vector V¢(z) is perpendicular to S at «
for every © € S 1 V. We shall always suppose that S is oriented, that
is, that we have made a choice of unit vector v(z) for each z € S, varying
continuously with x, which is perpendicular to.S at z. v(z) will be called
the normal to S at z; clearly on SNV we have

Vé(z)
v(z) = -/,
)= *194(e)]
Thus v is a C*~! function on S. If S is the boundary of a domain §2, we
always choose the orientation so that v points out of Q.
If u is a differentiable function defined near S, we can then define the
normal derivative of u on S by

du=vrv Vu
We pause to compute the normal derivative on the sphere S,(y). Since

lines through the center of a sphere are perpendicular to the sphere, we
have

01 @) =32Y 4 = %Z(;cj — )8  on S, (y).

r

We will use the following proposition several times in the sequel:
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(0.2) Proposition.
Let S be a compact oriented hypersurface of class C¥, k > 2. There is a
neighborhood V of S in R™ and a number ¢ > 0 such that the map

F(z,t) =z +tv(z)
is a C*¥~1 diffeomorphism of S x (—¢,¢€) onto V.

Proof (sketch):  F is clearly C*~!. Moreover, for each z € S its
Jacobian matrix (with respect to local coordinates on S x R) at (z,0) is
nonsingular since v is normal to S. Hence by the inverse mapping theorem,
F can be inverted on a neighborhood W, of each (z,0) to yield a C¥~}
map

F71 W, = (SNW,) x (—€z, €5)

for some ¢, > 0. Since S is compact, we can choose {z;} C S such that
the W, cover S, and the maps F;J.l patch together to yield a C*~! inverse
of F from a neighborhood V' of S to S x (—¢, ¢) where ¢ = min;j ¢,,. 1

The neighborhood V in Proposition (0.2) is called a tubular neigh-
borhood of S. It will be convenient to extend the definition of the normal
derivative to the whole tubular neighborhood. Namely, if u is a differen-
tiable function on V, for £ € § and —¢ < ¢ < € we set

(0.3) Su(z + tv(z)) = v(z) - Vu(z + tv(z)).

If F = (Fi,...,F,) is a differentiable vector field on a subset of R™, its
divergence is the function

V-F:anaij.
1

With this terminology, we can state the form of the general Stokes formula
that we shall need.

(0.4) The Divergence Theorem.

Let 2 C R" be a bounded domain with C' boundary S = 8%, and let F
be a C! vector field on Q. Then

[P vwiot) = [ V- Fe)da.
S Q
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The proof can be found, for example, in Treves [52, §10].
Every z € R™\ {0} can be written uniquely as z = ry with » > 0 and
y € S1(0) — namely, r = [¢| and y = z/|z|. The formula z = ry is called
the polar coordinate representation of . Lebesgue measure is given in
polar coordinates by
dz = r"~}drdo(y),

where do is surface measure on $1(0). (See Folland [14, Theorem (2.49)].)
For example, if 0 < a < b < oo and A € R, we have

I N s
<|zi<b 5.(0) Wn log(b/a) if A =—n,

where wy, is the area of S;(0) (which we shall compute shortly). As an
immediate consequence, we have:

(0.5) Proposition.

The function z — |z|* is integrable on a neighborhood of 0 if and only
if A > —n, and it Is integrable outside a neighborhood of 0 if and only if
A< —-n.

As another application of polar coordinates, we can compute what is
probably the most important definite integral in mathematics:

(0.6) Proposition.
fe""ltl2 dr = 1.

Proof: Let I, = fmne‘"|’|2 dz. Since e~™!* = I e~™3, Fubini’s
theorem shows that I, = (I1)", or equivalently that I, = (12)"/2. But in
polar coordinates,

27 00 2 oo 2 oo
I, =/ / e rdrdf :27r/ re " dr:w/ e ™ds=1. 1
0 0 0 0

This trick works because we know that the measure of S1(0) in R? is
27. But now we can turn it around to compute the area w, of 5; (0) in R™

for any n. Recall that the gamma function I'(s) is defined for Res > 0
by

(o <]
T(s) = / e”t* 1 dt.
0



