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. Edwin.Mares @vuw.ac.nz

Abstract. Negation in situaitons acts relevantly, but in worlds it acts classically. In this paper
I set out a basic relevant logic of information, L1, and a very closely related logic Ly. Ly is
the logic that is characterized by the class models that includes both worlds and situations. The
situations of one of these models, taken by itself (with its accessibility relation, incompatibility
relation, and set of distingushed situations) is an L, model structure. Given some intuitive
conditions relating L1 model structures to possible worlds. we end up with models for a logic
that relates relevant negation to classical negation in a reasonable way and allows us to say that
the two are compatible.

1. Introduction

The classical truth condition for negation is intuitive. A negation, — A, is true if
and only if A fails to be true. Issues concerning vagueness of course cause problems
for this intuitive condition, but I set those aside for the purposes of this paper. I treat
negation, in relation to truth, as fully classical.

Relevant logic was created to give more intuitive treatments of implication and
validity. The creators of relevant logic did not want to overthrow the classical treat-
ment of conjunction, disjunction, or negation. The idea behind relevant logic is to
reject the so-called paradoxes of material and strict implication and to avoid the fal-
lacies of relevance. The paradoxes of implication in which we are interested here
are:

p—(gVq)
(4A-q) —r
And here are the fallacies of relevance that we will discuss:

A
-.Bv-B
AN-A
.. B
These fallacies of relevance are the inferential counterparts of the paradoxes given
above. According to relevant logicians, the problem with these fallacies is that their
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premises seem to have nothing to do with their conclusions. The premises are irrele-
vant to their conclusions. Similarly, in the paradoxes their antecedents have nothing
to do with their consequents.

The formal semantics for relevant logic is an indexical semantics (see section 3
below). This means that in models for relevant logic formulas are satisfied or fail to
be satisfied at points. In order to make invalid an inference or paradox listed above.
we need to have models in which there is a point at which the premise or antecedent
is satisfied and the conclusion or consequent fails to be satisfied. Traditionally, the
satisfaction of a formula at a point in relevant models has been understood as meanihg
that the formula is true at that point. Thus, in order to falsify the paradoxes, on this
traditional reading, we need points at which the law of excluded middle. i.e.,

Lv-B
fails to be true and we need points at which a contradiction, viz..
AN-A

is true. Both of these are incompatible with a classical understanding of negation
(or perhaps conjunction and disjunction). Thus, given the traditional reading of the
semantics, we are forced into a non-classical understanding of at least some of the
connectives other than implication. In fact, it is negation that is usually understood
in a non-classical fashion. Thus, relevant logicians felt themselves driven to adopt
a non-classical treatment of negation in order to have a relevant understanding of
implication and validity.

In my opinion, relevant logicians do not need to adopt a non-classical truth con-
dition for negation or any of the other connectives except implication. The problem
is in the interpretation of the formal semantics for relevant logic. Instead of viewing
it as incorporating a non-classical theory of truth for formulas, we should think of it
as formalizing a theory of information. The difference between truth and information
can be illustrated clearly now with a brief example. The table on which my computer
sits is not green. The sentence ‘this table is not green’ as said by me as I write this
is true because my table fails to be green. But the information that this table is not
green is available to me in my current environment because the table is light brown,
a colour which is incompatible with its being green. Thus, we can distinguish be-
tween the truth condition for negation — which is understood in terms of the negated
sentence’s failing to be true — and its information condition — which is understood in
terms of something’s having properties incompatible with the negated sentence.

We can see also that there are important and more general differences between
information conditions and truth conditions. First, we relativize information condi-
tions to environments. My current environment contains the information that my
table is not brown, but it does not contain any information about the weather in
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Guangzhou at the present moment. It makes sense to think of information as a /ocal
phenomenon, that is, to treat information as being related to particular environments.
But it does not make sense to think of truth as relativized to environments. In this
environment, it is not true that it is not sunny in Guangzhou. Rather, we merely have
no information about the matter. Truth on the other hand is determined by the world
as a whole.!

A second important general difference between truth and information is that
information is in a certain sense always positive in nature, whereas truth may not be.
To return to the example of the colour of my desk, there is some positive information
that precludes its being green. What determines that the sentence ‘this desk is not
green’ is true on the other hand is merely the failure of ‘this desk is green’ to be true.
Information is by its nature something that is available to us (or other sentient beings).
What is given to us somehow depends of the positive facts of the environments in
which we find ourselves.

In this paper I set out a simple logic of information — a very weak relevant logic.
I then relate it to a classical treatment of the truth conditions of the propositional
connectives. I do so by first presenting the Routley-Meyer semantics and its informa-
tional interpretation. Then, I develop a second logic that incorporates the relationship
between environments (or “situations’) and possible worlds. This relationship the
metaphysical correlate of the relationship between information and truth. 1 then end
the paper by pointing out a virtue of the ability of relevant logic to incorporate the
classical view of negation in a relevant treatment of denial.

2. The Semantic Framework, Part I: Situations and Worlds

The philosophical framework that I use to interpret relevant logic is based on the
situation semantics of Jon Barwise and John Perry [3]. Barwise and Perry hold that
we should the notion of a situation should play the role usually occupied by possible
worlds in semantics, that is, the role of an index which satisfies or fails to satisfy
particular formulas. A concrete situation is just a part of a world. For example, my
study as I write this sentence contains certain information about the colour and shape
of my computer, my present actions, my dog’s current actions (she is asleep), and
so on. A concrete situation does not have to be spatio-temporally continuous. For
example, the situation that provides the background to a phone conversation might
include parts of the surroundings of both of the participants of that conversation. We
do not use concrete situations in the semantics of relevant logic, but some of their
close relatives — abstract situations. An abstract situation is an abstract object that

! Actually this is a more difficult matter than we can go into here. Sentences with indexical expers-
sions (such as “here”” and “now™) and ones with contextually restricted quantification (“‘everyone had
fun”) require some sort of restriction of context of evaluation or of domain. But if we think about “fully
articulated” senteces. then we do not have this problem.
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purports to characterize a concrete situation. In [9], I take abstract situations to be
set theoretic constructions. An abstract situation that accurately characterizes the
information contained in a concrete situation in some possible world is a possible
situation and an abstract situation that does not accurately represent any concrete
situation is called an impossible situation.

The notion of a situation’s containing certain information is crucial to my current
project, so I should explain it a little further. Let’s return to the concrete situation that
is my study at this time. Actually, there are various different situations here, but we
will ignore that for the moment and pretend that there is just one. There is certain
information “available” to me in this situation. The colours and shapes of the objects
in the room, my own position at my desk, the sound of my dog’s breathing, the noise
of the cicadas outside, the smell of the tree outside my window, and so on. If I turn
on the television or the radio, more information will be available to me. Information
does not have to be perceptually present in order to count as information. As long as
there is a reliable connection between me and a particular fact, the information that
this is a fact is available information from my point of view (see [4]).

Situation semantics provides one theory on which to base an informational ap-
proach to the semantics for a logical system. I have argued elsewhere that an informa-
tional perspective on semantics is more appropriate than a truth conditional approach
for relevant logic (see [10] and [11]). Here [ will briefly repeat one of these arguments
to motivate and help explain the view.

As we said, the reason why relevant logic was originally developed was to avoid
the so-called paradoxes of material and strict implication and to avoid certain infer-
ence forms thought to be “fallacies of relevance”. Here again is one such fallacious

inference scheme: A

..Bv-B

In this scheme a tautology — the law of excluded middle - follows from an arbitrary
proposition. On the classical definition of validity, an inference is valid if in every
case in which the premises are all true, the conclusion is also true. One way to avoid
making this inference form valid is to accept the classical definition of validity while
rejecting the classical logicians notion of what counts as an admissible case — that is,
one might accept “cases” in which the law of excluded middle fails to be true. This is
the approach of Beall and Restall’s truth conditional form of logical pluralism [5].

If we accept the Beall-Restall line we have to accept pluralism about the truth
conditions of the logical connectives. In order to construct cases in which the law
of excluded middle fails to be true we must reject the classical truth conditions for
either negation or disjunction. The point of relevant logic, however, was not to force
a rethinking of the nature of truth. Rather. as I have said, the point was to alter

*Truth conditional logical pluralism is not the only type of logical pluralism found in the literature.
There is also informational logical pluralism (see [1]). which is a view closer to the one of this paper.
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the classical notion of inference. Thus, it would seem that modifying the notion of
validity, which is the semantic counterpart of inference, makes more sense than to
change the classical notion of truth. I suggest that understanding validity as informa-
tion preservation rather than as truth preservation fits better with the motivation for
relevant logic.

The concept of information preservation is similar to truth preservation. An in-
ference rule preserves information if and only if every abstract situation which con-
tains the information represented by the premises of the rule, then it also contains the
information expressed by the conclusion. In order to make the notion of information
preservation useful as a basis for a formal semantics, we need an inductive defini-
tion of the conditions under which situations contain the information expressed by
formulas. We do this in the next section.

3. The Semantic Framework, Part II: Routley-Meyer Models

In the early 1970s, Richard Routley and Robert Meyer first developed their
model theory for relevant logic. We will discuss a slightly modified version of this se-
mantics which treats negation using an incompatibility relation originally employed
by Robert.Goldblatt in his semantics for orthologic (a generalization of quantum
logic) [8] and adapted to relevant logic by J.M. Dunn [6].

A relevant model structure is a quadruple S =< 5.0, R, L >, where S is a non-
empty set (of situations), 0 is a non-empty subset of S (the “logical situations™), R is a
ternary relation on S (which is used to give an information condition for implication),
and | (“perp”) is a binary relation on S (used to give an information condition for
negation). We define a partial order < on S such that s < t if and only if there is a
situation o in O for which Rost. We can think of < as an informational version of a
hereditariness relation, like that found in Kripke’s semantics for intuitionist logic. A
set of situations closed upwards under < is a set X such that if for any situations s
andtifs € Xands <t thent e X.

All relevant model structures satisfy the following conditions:

1. if Rstuand s < s, then Rs'tu;
2. <is transitive and reflexive;
3. L is symmetrical.

A value assignment v on S is a function from the propositional variables to the
set of subsets of S closed upwards under <. Each value assignment determines a
satisfaction relation, |=, that obeys the following information conditions:

e s = piff s € v(p)
o s AABiffs = Aands = B
e sEAVBIiffsk=AorsEB
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e s=A— Biff VaVy((Rsay N = A) D yE B)
o s=oAiffVe(r = A D s L)

A formula A is valid in M if and only if for all o € 0, 0 = A.> The logic that is
characterized by this class of model structures is a very weak system. It is an ver-
sion of the base relevant system B with a minimal (weak intuitionist) negation. The
negation is minimal in the sense that it does not satisfy double negation elimination
(—A — A) nor does it satisfy ex falso quodlibet ((AA—A) — B), like the negation
of Johannson’s minimal logic. We call this logic L. It is axomatized in the section
4.

The following are two lemmas that we use quite often. They are proven in [13].
Lemma 1 (Hereditariness) If s = A and s < ¢, thent = A.
Lemma 2 (Semantic Entailment) For any model M =< S,0.R. L.v >, M E
A — Biffforalls € Sif s = A, then s = B.

4. L, and Soundness

This class of models characterizes a logic that we call L.
Axiom Schemes:

1. A—A
2. A—-(AVB), B ( Vv B)
3. (A—-C)N (B — ((AVB) - (C)
4. (A—-C)— ((A A B — C)
5. (AN(BVC)) - ({(AAB)V(AAC))
6. A — —-—A
Rules:
Modus ponens:
A—B
A
B
Affixing:
A— B
B—-C
A—-C

*1 have argued elsewhere for a very different treatment of disjunction in informational semantics
[11]. But here I am using a simple version of the semantics for relevant logic to experiment with a
particular view of the relationship between situations and worlds. At some later date I should try to
modify the present theory to accommodate my more complicated view of the logical constants.
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Adjunction:
A
B
ANB
Contraposition:
A—B
-3 — —A

Soundness for the negation-free fragment of the logic is proven in the same way
as in the original soundness proofs for relevant logic (see, e.g., [13], [14], [2]).

To prove the validity of axiom 6, we assume that for an arbitrary situation s,
s = A. Suppose that ¢ = = A. And assume, for the sake of a reductio that s is
compatible with ¢. Since incompatibility is symmetrical, so is compatibility. Thus.
t is compatible with s. But then, by the information condition for negation, s ¥
A, contrary to our supposition. Thus, by reductio, t ¥ —A. Generalizing, by the
information condition for negation, s = —— A.

Let us now prove the validity of the contraposition rule. Suppose that M |=
A — B. Also suppose that for an arbitrary situation s that s = —B. By the infor-
mation condition for negation, if ¢t |= B, then s L t. Suppose that ¢ = A. Then, by
lemma 2 t = B. So, s L t. Generalizing, by the information condition for negation,
s E —B. So,by lemma2 M | =B — —A.

5. Canonical Model Construction and Completeness for L,

In this section I sketch the completeness proof for L. This completeness proof
has become quite standard in the literature on relevant logic and so there is no need to
prove every lemma. But we will need to understand the construction of the canonical
model in order to apply it again to Lo in section 8 below.

First we need a few definitions and then to sketch the relevant form of the Lin-
denbaum extension lemma. A theory for a logic L is a set of formulas I" such that if
(A1 A ... N Ay) — Bisatheorem of L and Ay, ..., A, € I'"then B € T". A theory
of L is prime if and only if for every disjunction AV B € " either Aor BisinT. A
theory is L-regular if and only if it contains all the theorems of L.

In order to prove the Lindenbaum theorem, we also need the notion of a consis-
tent L-pair (I', A): this is a pair of sets of formulas such that there are no formulas
A1, ..., A, el and By, ... B,, € Asuchthat (A] A ... ANA,) — (B V...V By)is
a theorem of L.

Lemma3 If (I, A)is aconsistent L-pair, then there is a prime theory I D I such
that (I, A) is a consistent L, -pair.

The proof for this lemma, due to Belnap and Gabbay, incorporates a general-
ization of the construction used to prove the Lindenbaum lemma for classical and
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modal logics. We begin as usual with an exhaustive enumeration of the formulas
Ag, Aj. As, ... A,,..... Wethen set out the following inductive definition of (T',,, A,, ).

Lo=I7 Apg=A
FlH—l = Fn‘ U {An}: An+1 = An
if (T, U{A,}, Ay) is consistent, and

I‘n.H = ' An+1 = An U {An}

otherwise. o -
M= [Jr: A=A,
n=0 n=0

We then go on in the usual way to show that I is a prime regular L, theory and
that (I". A) is a consistent L, -pair (see [13] or [14]). The Lindenbaum lemma shows
among other things that the set of theorems of L, is the intersection of the set of
prime regular L, theories.

The canonical model for L, is a quintuple Mp, =<81,.0,,.R,. L1, v, >
such that:

e 5, is the set of prime L; theories;

e Oy, is the set of prime regular L, theories;

e R stuiff VAVB((A—->BesAAct) D Beu)
sLlp, tiff JA(A et A —A € s):

v, (p) ={s€SL, : p€ s}

For the most part, the canonical model construction for L, is fairly standard.
We can show in the standard way that Ry, behaves as a relation in a Routley-Meyer
model (see, e.g., [12] or [14]). The only features of the canonical model that we have
to prove to be correct are some that have to do with the incompatibility relation.

To show that | ;, is symmetrical, assume that s |, t. Then there is some wif
A such that A € ¢t and —A € s. By the double negation axiom -—A € , so there is
some formula B (namely —A) such that ~B € s and B € t. Therefore, { | L, S

The following lemma shows that the incompatibility relation captures the infor-
mation condition for negation.

Lemmad -Ac€siffVi(Aet D s 1y t).

Proof == Follows from the definition of L.

<= Suppose that V(A € t > s 1, t). Also suppose that ~A ¢ s. By the
contraposition rule, ({A}.{B : ~B € s}) is a consistent L, pair. So by lemma ?, we
can extend {A} to a prime L theory, u such that (u. { B : -B € s}) is a consistent
L, pair. But, by the definition of 1, it is not the case that s | L, uand A € u,
contrary the assumption of the reductio. Hence, —=A € . ]
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In order to prove completeness, one then uses the standard lemmas together with
the ones that we have proven here to show that:

Theorem 5 For all formulas A and all situation s € S,,, s = Aiff A € s.

Completeness follows from this theorem and the Lindenbaum lemma.

6. Relating Situations to Worlds

Now that we have distinguished between information conditions and truth con-
ditions and similarly between situations and worlds, it is time to relate them to one
another in a formal manner. I do so by defining another class of model structures
W =< W.S5,0,R, L, In >, where < §,0,R, 1> is an I.; model structure, W
is a non-empty set (of “possible worlds”), and In{w) is a set of situations down-
wards closed under <. An L; model is a septuple < W, 5.0. R. L, In,v >, where
< W.S5.0,R. L. In > is an Ly model structure and v is a function from proposi-
tional variables into (.S U W), such for any propositional variable p v(p) N S is
closed upwards under <. In all Ly models, the following conditions obtain:

WO For every propositional variable p, w € v(p) iff there is some situation s in w
such that s € v(p).

W1 For every world w there is some o € 0 such that o is in w.

W2 For every world w and all situations s and ¢ in w there is some situation u in w’
such that s < w and £ < w.

W3 For every world w and all situations s and ¢ in w, s is compatible with ¢.

W4 For every world w there is some situation s in w such that for all situations ¢,
s L tifftisnotin w.

We introduce a second satisfaction relation, I, between worlds and formulas.
This relation represents truth rather than information containment. It is defined by
the following clauses:

w Ik piff w € v(p)

wlkFAABiffwlk Aandw I+ B

wlk AvBiffwlt Aorwlk B

wlk —Aiffu A

wlk A— Biff 3s(s € In(w) N s = A — B)

A formula A is valid in an Ly model if and only if for every w € W, w I+ A.
These conditions allow us to make the connection between worlds and situations
precise. In particular. we can now prove the following:

Proposition 6 For any world w and formula A, w I+ A iff there is a situation s in
w such that s = A.
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Proof By induction on the complexity of A.

Case 1. A = p. w I+ A iff there is a situation s in w such that s = A by WO0.

Case 2. A = BAC. Suppose first that w |- B A C'. Then, by the truth condition
for conjunction, w I B and w | C. By the inductive hypothesis, w - B iff there is
a situation s in w such that s |= B and w I+ C iff there is a situation ¢ in w such that
t = C. By W2 there is some situation « in w such that s < u and ¢ < u. By lemma
lulEBandu=Candsou = BAC.

Now suppose that there is a situation s in w such that s = B A (. By the
information condition for conjunction, s = B and s = C. So, by the inductive
hypothesis, w I+ B and w I+ C, hence w I BAC.

Case 3. A = B v C. Follows straightforwardly from the inductive hypothesis
and the information and truth conditions for disjunction.

Case 4. A = B — (. Follows directly from the truth condition for implication.

Case 5. A = —B. Suppose first that w I —=B. By W4 there is some situation
s in w such that if s and { are compatible, then ¢ is also in w. By the inductive
hypothesis, for all such ts, t ¥ B. So, by the information condition for negation.
s k= —-B.

Now suppose that there is some situation s in w such that s | —B. Lett be
some other situation in w. Then, by W3 s and ¢ are compatible. By the information
condition for negation t ¥ B. So, by the inductive hypothesis w ¥ B and by the truth
condition for negation w I+ ~B. O

7. The Logic L,
The logic Ly is axiomatized by including
All the theorems of L

and
AV —-A

together with the following rules:

Modus Ponens
A— B

Affixing:
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Adjunction

ANB

Contraposition:
A-B

-B — -A
Disjunctive Syllogism:
AVB

-A

B
One might be surprised to see disjunctive syllogism in the list of rules of a relevant
logic. For it has long been a notorious feature of relevant logics that they eschew
disjunctive syllogism. But if we are to adopt a classical view of the truth conditions
of negation, then the truths are closed under disjunctive syllogism. So we need it
either as a primitive rule or at least as an admissible rule in our logic. Whereas we
can show that disjunctive syllogism is admissible in many other relevant logics. I am
not sure that this is true of L; — this is an open question.

Soundness is easily proven.

8. Completeness of L,

In order to show that Ly is complete over this semantics we first formulate a
logic L;. The set of truths at worlds is closed under this logic and we will need it
in order to construct our canonical model. The logic is stated as a sequent system.
Sequents have the form I' - A, where neither side of the turnstile can be empty and
both sets are finite. The system has one axiom

At Bif A - B isatheorem of Ly
and the following rules. A rule of adjunction:
Al A, Fry AN NA,

A modus ponens rule:
A— B AW, B

A transitivity rule for implication:
A—-BB—-Ctr, A—-C
And a disjunctive syllogism rule:

AvB.-AF;, B
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We also need a weakening rule

g, A
[Tk, AA

where T',A’ may be empty.

two interchange rules

T.ABI'FL, A
I.B.AT Fr, A
I'br, A A BA
Tr., A B AA"

, where I'. T may be empty

where A, A’ may be empty

and two versions of Gentzen's cut rule:

T Al AT bp, A Trr, Bro, BiuA Fp, (BIV..VB,) > A
Tk, A Tk, AA

We also need a rule connecting disjunction with the comma on the right-hand side of
the turnstile:

A v v A4, Fry A, LA,

The first four rules are just the rules of L,. The use of theories closed under the
rules of the logic in order to prove completeness is taken from [15] and [7]. We use
some additional rules in this case in order to facilitate the particular version of the
completeness proof that we give below.

Lemma 7 The following are provabie:

() A AT, A
VT AT, A

T, AAAA
T, AA N

(i)
Proof (i)
T A AT F, A ANAFL A )
FLAANAT B, A Arp, AnA™Y
T AL, A

cul

(11)
I'tkp, AAAN Fr, (AvV A)— A
Tro. A AN

cut
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Lemma 8 For all sets of wffs I'and A, I' 7, Aiff AT b, VA. where AL is the
conjunction of elements of I and VA is the disjunction of elements of A.

Proof Letl' ={G,...G,}and A = {D.....Dp}.

= From
Gy Gubiy Divow Dy GiAZAGaFL, G 0 GIAL RGP Ga
GiAN..AGp... GY N . NGy Ly Dy Dy,
and
k1, D1 — (D1 V..V Dy) -+ Fpy D= (D1 V.oV Dyy)

together with the cut rule, we can derive
GiN. NG, .Gy N NGy L, D1V N Dy .. D1V oV Dy,
and from this and lemma 7 we obtain
Gi\AN.. NGy, DyV...VDy

which is what we want.
<=

GiAAGytp, D\V..V Dy Gr....Gy by GLA LA Gn,u,
Gy....G, Fr. Dyv..vDy, Dyv..vDytp, D,....D,,
G],--.,Gn, }_L;; Dl?""D‘m

—cut

L

We now define a consequence operator C,, on sets of formulas such that C'r, (')
= {A: T+, A whereI"is a finite subset of I'}. Consider the set Ly of theorems
of L. We can show that this set is closed under C,, i.e.

Cr,(L2) = La.
To prove this, we first show the following lemma.

Lemma9 [fI't;. A, Lyisclosed under AI' -, VA.

Proof For the axiom, adjunction, modus ponens, the disjunction rule, and the inter-

change rules this is obvious. So we prove it for weakening and the cut rule.
Weakening. Suppose that L is closed under AI" =p, VA. This means that we

have a truth preserving inference from b, Al to -7, VA. We can now show that



