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Preface to the Second
Edition

Twelve years have passed since the publication of the first edition of A Multigrid
Tutorial. During those years, the field of multigrid and multilevel methods has
expanded at a tremendous rate, reflecting progress in the development and analysis
of algorithms and in the evolution of computing environments. Because of these
changes, the first edition of the book has become increasingly outdated and the
need for a new edition has become quite apparent.

With the overwhelming growth in the subject, an area in which I have never
done serious research, I felt remarkably unqualified to attempt a new edition. Re-
alizing that I needed some help, I recruited two experts to assist with the project.
Steve McCormick (Department of Applied Mathematics, University of Colorado at
Boulder) is one of the original researchers in the field of multigrid methods and the
real instigator of the first edition. There could be no better collaborator on the
subject. Van Emden Henson (Center for Applied Scientific Computing, Lawrence
Livermore National Laboratory) has specialized in applications of multigrid meth-
ods, with a particular emphasis on algebraic multigrid methods. Our collaboration
on a previous SIAM monograph made him an obvious choice as a co-author.

With the team in place, we began deliberating on the content of the new edi-
tion. It was agreed that the first edition should remain largely intact with little
more than some necessary updating. Our aim was to add a roughly equal amount
of new material that reflects important core developments in the field. A topic
that probably should have been in the first edition comprises Chapter 6: FAS
(Full Approximation Scheme), which is used for nonlinear problems. Chapter 7 is
a collection of methods for four special situations that arise frequently in solving
boundary value problems: Neumann boundary conditions, anisotropic problems,
variable-mesh problems, and variable-coefficient problems. One of the chief moti-
vations for writing a second edition was the recent surge of interest in algebraic
multigrid methods, which is the subject of Chapter 8. In Chapter 9, we attempt
to explain the complex subject of adaptive grid methods, as it appears in the FAC
(Fast Adaptive Composite) Grid Method. Finally, in Chapter 10, we depart from
the predominantly finite difference approach of the book and show how finite ele-
ment formulations arise. This chapter provides a natural closing because it ties a
knot in the thread of variational principles that runs through much of the book.

There is no question that the new material in the second half of this edition is
more advanced than that presented in the first edition. However, we have tried to
create a safe passage between the two halves, to present many motivating examples,
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X Preface

and to maintain a tutorial spirit in much of the discourse. While the first half of
the book remains highly sequential, the order of topics in the second half is largely
arbitrary.

The FAC examples in Chapter 9 were developed by Bobby Philip and Dan Quin-
lan, of the Center for Applied Scientific Computing at Lawrence Livermore National
Laboratory, using AMR-++ within the Overture framework. Overture is a parallel
object-oriented framework for the solution of PDEs in complex and moving geome-
tries. More information on Overture can be found at http://www.llnl.gov/casc/
Overture.

We thank Irad Yavneh for a thorough reading of the book, for his technical
insight, and for his suggestion that we enlarge Chapter 4. We are also grateful
to John Ruge who gave Chapter 8 a careful reading in light of his considerable
knowledge of AMG. Their suggestions led to many improvements in the book.

Deborah Poulson, Lisa Briggeman, Donna Witzleben, Mary Rose Muccie, Kelly
Thomas, Lois Sellers, and Vickie Kearn of the editorial staff at SIAM deserve
thanks for coaxing us to write a second edition and for supporting the project from
beginning to end. Finally, I am grateful for the willingness of my co-authors to
collaborate on this book. They should be credited with improvements in the book
and held responsible for none of its shortcomings. '

Bill Briggs
November 15, 1999
Boulder, Colorado



Preface to the First Edition

Assuming no acquaintance with the subject, this monograph presents the essential
ideas that underlie multigrid methods and make them work. It has its origins in a
tutorial given at the Third Copper Mountain Conference on Multigrid Methods in
April, 1987. The goal of that tutorial was to give participants enough familiarity
with multigrid methods so that they could understand the following talks of the
conference. This monograph has been written in the same spirit and with a similar
purpose, although it does allow for a more realistic, self-paced approach.

It should be clear from the outset that this book is meant to provide a basic
grounding in the subject. The discussion is informal, with an emphasis on moti-
vation before rigor. The path of the text remains in the lowlands where all of the
central ideas and arguments lie. Crossroads leading to higher ground and more
exotic topics are clearly marked, but those paths must be followed in the Suggested
Reading and the Exercises that follow each chapter. We hope that this approach
will give a good perspective of the entire multigrid landscape.

Although we will frequently refer to the multigrid method, it has become clear
that multigrid is not a single method or even a family of methods. Rather, it
is an entire approach to computational problem solving, a collection of ideas and
attitudes, referred to by its chief developer Achi Brandt as multilevel methods.

Originally, multigrid methods were developed to solve boundary value problems
posed on spatial domains. Such problems are made discrete by choosing a set of grid
points in the domain of the problem. The resulting discrete problem is a system of
algebraic equations associated with the chosen grid points. In this way, a physical
grid arises very naturally in the formulation of these boundary value problems.

More recently, these same ideas have been applied to a broad spectrum of prob-
lems, many of which have no association with any kind of physical grid. The original
multigrid approach has now been abstracted to problems in which the grids have
been replaced by more general levels of organization. This wider interpretation of
the original multigrid ideas has led to powerful new techniques with a remarkable
range of applicability.

Chapter 1 of the monograph presents the model problems to which multigrid
methods were first applied. Chapter 2 reviews the classical iterative (relaxation)
methods, a firm understanding of which is essential to the development of multigrid
concepts. With an appreciation of how the conventional methods work and why
they fail, multigrid methods can be introduced as a natural remedy for restoring
- and improving the performance of the basic relaxation schemes. Chapters 3 and
4 develop the fundamental multigrid cycling schemes and discuss issues of imple-
mentation, complexity, and performance. Only in Chapter 5 do we turn to some
theoretical questions. By looking at multigrid from a spectral (Fourier mode) point

xi



xii _ Preface

of view and from an algebraic (subspace) point of view, it is possible to give an
explanation of why the basic multigrid cycling scheme works so effectively.

Not surprisingly, the body of multigrid literature is vast and continues to grow at
an astonishing rate. The Suggested Reading list at the end of this tutorial [see the
bibliography in the Second Edition| contains some of the more useful introductions,
surveys, and classical papers currently available. This list is hardly exhaustive. A
complete and cumulative review of the technical literature may be found in the
Multigrid Bibliography (see Suggested Reading), which is periodically updated. It
seems unnecessary to include citations in the text of the monograph. The ideas
presented are elementary enough to be found in some form in many of the listed
references. :

Finally, it should be said that this monograph has been written by one who
has only recently worked through the basic ideas of multigrid. A beginner cannot
have mastered the subtleties of a subject, but often has a better appreciation of
its difficulties. However, technical advice was frequently necessary. For this, I
greatly appreciate the guidance and numerous suggestions of Steve McCormick,
who has mastered the subtleties of multigrid. I am grateful to John Bolstad for
making several valuable suggestions and an index for the second printing. For
the fourth printing the Suggested Reading section has been enlarged to include six
recently published books devoted to multigrid and multilevel methods. A genuinely
new development is the creation of mg-net, a bulletin board/newsgroup service
which is accessible by sending electronic mail to mgnet@cs.yale.edu. For the real
production of this monograph, I am grateful for the typing skills of Anne Van
Leeuwen and for the editorial assistance of Tricia Manning and Anne-Adele Wight
at SIAM.
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Chapter 1

Model Problems

Multigrid methods were originally applied to simple boundary value problems that
arise in many physical applications. For simplicity and for historical reasons, these
problems provide a natural introduction to multigrid methods. As an example,
consider the two-point boundary value problem that describes the steady-state
temperature distribution in a long uniform rod. It is given by the second-order
boundary value problem

—u"(z) + ou(z) = f(z), 0<z<l o2>0, (1.1)
u(0)=u(l) = 0. (1.2)

While this problem can be handled analytically, our present aim is to consider
numerical methods. Many such approaches are possible, the simplest of which is a
finite difference method (finite element formulations will be considered in Chapter
10). The domain of the problem {z : 0 < z < 1} is partitioned into n subintervals
by introducing the grid points z; = jh, where h = 1/n is the constant width of the
subintervals. This establishes the grid shown in Fig. 1.1, which we denote Q".

At each of the n—1 interior grid points, the original differential equation (1.1) is
replaced by a second-order finite difference approximation. In making this replace-
ment, we also introduce v; as an approximation to the exact solution u(z;). This .
approximate solution may now be represented by a vector v = (vy,...,v,_)7,
whose components satisfy the n — 1 linear equations

—Vj-1 + 21)_7' — Vj41

h2

+ov; = f(z;), 1<j<n-1, (1.3)

ve=v, = 0.

Defining f = (f(z1),--., f(@n=1))T = (f1,.--, fa—1)T, the vector of right-side
values, we may also represent this system of linear equations in matrix form as

2+0h? -1 v f
-1 24+ 0h? -1 . .

. -1 . .
-1 24 0h?] Lua_q fn-1
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Figure 1.1: One-dimensional grid on the interval 0 < = < 1. The grid spacing is
= ;1; and the jth grid point is x; = jh for 0 < j <n.

pd

xz

Figure 1.2: Two-dimensional grid on the unit square. The solid dots indicate the
unknouwns that are related at a typical grid point by the discrete equations (1.5).

or even more compactly as Av = f. The matrix A is (n — 1) x (n — 1), tridiagonal,
symmetric, and positive definite.

Analogously, it is possible to formulate a two-dimensional version of this prob-
lem. Consider the second-order partial differential equation (PDE)

—Ugzy — Uyy +ou= f(z,y), 0<z<l 0O0<y<l o>0. (1.4)

With o = 0, this is the Poisson equation; with ¢ # 0, it is the Helmholtz equation.
We consider this equation subject to the condition that u = 0 on the boundary of
the unit square.

As before, this problem may be cast in a discrete form by defining the grid
points (zi,y;) = (ihz,jhy), where h, = i— and hy = % This two-dimensional grid

is also denoted Q2" and is shown in Fig. 1.2. Replacing the derivatives of (1.4) by
second-order finite differences leads to the system of linear equations

—Ui—1,5 +2V5 ~ Vg1 | —Vij-1 + 2Vi5 — Vi j41 -
i + iz + ovi; = fij,
(1.5)
’Uio=U-in=UOj=vmj=07 ISESm—I, 1_<_an—1'

As before, v;; is an approximation to the exact solution u(z;, ;) and fi; = f(zi, y;)-

There are now (m — 1)(n — 1) interior grid points and the same number of
unknowns in the problem. We can choose from many different orderings of the
unknowns. For the moment, consider the lericographic ordering by lines of constant
i. The unknowns of the ith row of the grid may be collected in the vector v; =
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(’Ui]_, N ,’U,;yn_l)T for 1 <i<m-— 1. Similarly, let f,‘ = (fﬂ, Ve ,fi,n_l)T. The
system of equations (1.5) may then be given in block matrix form as
B —al Vi fi
—al B —al . .
—al
~al B Vm—1 frn-1

This system is symmetric, block tridiagonal, and sparse. It has block dimension
(m —1) x (m—1). Each diagonal block, B, is an (n—1) x (n — 1) tridiagonal matrix
that looks much like the matrix for the one-dimensional problem. Each off-diagonal
block is a multiple, a = 7112—, of the (n — 1) x (n — 1) identity matrix I.

Matrix Properties. The matrices produced by the discretization of self-
adjoint boundary value problems have some special properties that are desirable
for many numerical methods. Let A with elements a,; be such a matrix. It is
generally symmetric (A = AT) and sparse (a large percentage of the elements
are zero). These matrices are also often weakly diagonally dominant, which
means that, in magnitude, the diagonal element is at least as large as the sum
of the off-diagonal elements in the same row:

n
Z|a,»j| <lag| for 1<i<n.
i

These matrices are also positive definite, which means that, for all vectors u # 0,
we have u” Au > 0. This property is difficult to interpret, but there are several
alternate characterizations. For example, a symmetric positive definite matrix
has real and positive eigenvalues. It can also be shown that if A is symmetric and
diagonally dominant with positive diagonal elements, then A is positive definite.
One other matrix property arises in the course of our work: a symmetric positive
definite matrix with positive entries on the diagonal and nonpositive off-diagonal
entries is called an M-matriz.

We occasionally appeal to stencils associated with discrete equations. For the
one-dimensional model problem, the stencil representation of the matrix is

1
A= (-1 2400 —1).

The two-dimensional stencil for h, = hy, = h is

1 -1
A=—| -1 440r? -1
h? 1

Stencils are useful for representing operators that interact locally on a grid. How-
ever, they must be used with care near boundaries.

The two model linear systems (1.3) and (1.5) provide the testing ground for
many of the methods discussed in the following chapters. Before we proceed, how-
ever, it is useful to give a brief summary of existing methods for solving such
systems.
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During the past 50 years, a tremendous amount of work was devoted to the
numerical solution of sparse systems of linear equations. Much of this attention
was given to structured systems such as (1.3) and (1.5) that arise from boundary
value problems. Existing methods of solution fall into two large categories: direct
methods and iterative (or relaration) methods. This tutorial is devoted to the latter
category.

Direct methods, of which Gaussian elimination is the prototype, determine a
solution exactly (up to machine precision) in a finite number of arithmetic steps.
For systems such as (1.5) that arise from a two-dimensional elliptic equation, very
efficient direct methods have been developed. They are usually based on the fast
Fourier transform or the method of cyclic reduction. When applied to problems on
an n x n grid, these methods require O(n?logn) arithmetic operations. Because
they approach the minimum operation count of O(n?) operations, these methods are
nearly optimal. However, they are also rather specialized and restricted primarily
to systems that arise from separable self-adjoint boundary value problems.

Relaxation methods, as represented by the Jacobi and Gauss—Seidel iterations,
begin with an initial guess at a solution. Their goal is to improve the current
approximation through a succession of simple updating steps or iterations. The se-
quence of approximations that is generated (ideally) converges to the exact solution
of the linear system. Classical relaxation methods are easy to implement and may
be successfully applied to more general linear systems than most direct methods
[23, 24, 26].

As we see in the next chapter, relaxation schemes suffer from some disabling lim-
itations. Multigrid methods evolved from attempts to overcome these limitations.
These attempts have been largely successful: used in a multigrid setting, relaxation
methods are competitive with the fast direct methods when applied to the model
problems, and they have more generality and a wider range of application.

In Chapters 1-5 of this tutorial, we focus on the two model problems. In Chap-
ters 6-10, we extend the basic muitigrid methods to treat more general boundary
conditions, operators, and geometries. The basic methods can be applied to many
elliptic and other types of problems without significant modification. Still more .
problems can be treated with more sophisticated multigrid methods.

Finally, the original multigrid ideas have been extended to what are more ap-
propriately called multilevel methods. Purely algebraic problems (for example, net-
work and structural problems) have led to the development of algebraic multigrid or
AMG, which is the subject of Chapter 8. Beyond the boundaries of this book, mul-
tilevel methods have been applied to time-dependent problems and problems in im-
age processing, control theory, combinatorial optimization (the traveling salesman
problem), statistical mechanics (the Ising model), and quantum electrodynamics.
The list of problems amenable to multilevel methods is long and growing. But first
we must begin with the basics.

Exercises

1. Derivative (Neumann) boundary conditions. Consider model problem
(1.1) subject to the Neumann boundary conditions v'(0) = v/(1) = 0. Find
the system of linear equations that results when second-order finite differences
are used to discretize this problem at the grid points zo,...,z,. At the end
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points, zo and T,, one of many ways to incorporate the boundary conditions
is to let v; = vp and v,—1 = v,. (We return to this problem in Chapter
7.) How many equations and how many unknowns are there in this problem?
Give the matrix that corresponds to this boundary value problem.

2. Ordering unknowns. Suppose the unknowns of system (1.5) are ordered
by lines of constant j (or y). Give the block structure of the resulting matrix
and specify the dimensions of the blocks.

3. Periodic boundary conditions. Consider model problem (1.1) subject
to the periodic boundary conditions u(0) = u(1) and v'(0) = v’(1). Find the
system of linear equations that results when second-order finite differences are
used to discretize this problem at the grid points zo,...,Z,-1. How many
equations and unknowns are there in this problem?

4. Convection terms in two dimensions. A convection term can be added
to the two-dimensional model problem in the form

—€(Uzz + Uyy) + auz = f(z).

Using the grid described in the text and second-order central finite difference
approximations, find the system of linear equations associated with this prob-
lem. What conditions must be met by a and € for the associated matrix to
be diagonally dominant?

5. Three-dimensional problem. Consider the three-dimensional Poisson equa-
tion
—Ugx — Uyy — Uzz = f(m) Y z)'

Write out the discrete equation obtained by using second-order central finite
difference approximations at the grid point (x;,y;,2x). Assuming that the
unknowns are ordered first by lines of constant x, then lines of constant y,
describe the block structure of the resulting matrix.






Chapter 2

Basic Iterative Methods

We now consider how model problems (1.3) and (1.5) might be treated using con-
ventional iterative or relaxation methods. We first establish the notation for this
and all remaining chapters. Let

Au=f

denote a system of linear equations such as (1.3) or (1.5). We always use u to
denote the exact solution of this system and v to denote an approximation to the
exact solution, perhaps generated by some iterative method. Bold symbols, such as
u and v, represent vectors, while the jth components of these vectors are denoted
by u; and v;. In later chapters, we need to associate u and v with a particular
grid, say Q. In this case, the notation u® and v" is used.

Suppose that the system Au = f has a unique solution and that v is a computed
approximation to u. There are two important measures of v as an approximation
to u. One is the error (or algebraic error) and is given simply by

e=u—vv.

The error is also a vector and its magnitude may be measured by any of the standard
vector norms. The most commonly used norms for this purpose are the maximum
(or infinity) norm and the Euclidean or 2-norm, defined, respectively, by

1/2

n
= ) = 2
Iello = e s and el =3¢
=

Unfortunately, the error is just as inaccessible as the exact solution itself. How-
ever, a computable measure of how well v approximates u is the residual, given
by

r=1f— Av.

The residual is simply the amount by which the approximation v fails to satisfy
the original problem Au = f. It is also a vector and its size may be measured by
the same norm used for the error. By the uniqueness of the solution, r = 0 if and
only if e = 0. However, it may not be true that when r is small in norm, e is also
small in norm.
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Residuals and Errors. A residual may be defined for any numerical approx-
imation and, in many cases, a small residual does not necessarily imply a small
error. This is certainly true for systems of linear equations, as shown by the
following two problems:

(2 2)(8)-(5) = (2)(8)-(5)

21 —-20 u /- \ —19 3 -1 uy ) 1 )
Both systems have the exact solution u = (1,2)7. Suppose we have computed
the approximation v = (1.95,3)T. The error in this approximation is e =
(—0.95, —1)T, for which |le|2 = 1.379. The norm of the residual in v for the
first system is ||r1]|2 = 0.071, while the residual norm for the second system is
|rzll2 = 1.851. Clearly, the relatively small residual for the first system does

not reflect the rather large error. See Exercise 18 for an important relationship
between error and residual norms.

Remembering that Au = f and using the definitions of r and e, we can derive
an extremely important relationship between the error and the residual (Exercise
2):

Ae=r.

We call this relationship the residual equation. It says that the error satisfies the
same set of equations as the unknown u when f is replaced by the residual r. The
residual equation plays a vital role in multigrid methods and it is used repeatedly
throughout this tutorial.

We can now anticipate, in an imprecise way, how the residual equation can be
used to great advantage. Suppose that an approximation v has been computed
by some method. It is easy to compute the residual r = f — Av. To improve the
approximation v, we might solve the residual equation for e and then compute a
new approximation using the definition of the error

u=v+te.

In practice, this method must be applied more carefully than we have indicated.

Nevertheless, this idea of residual correction is very important in all that follows.
We now turn to relaxation methods for our first model problem (1.3) with o = 0.

Multiplying that equation by h2 for convenience, the discrete problem becomes

—Uj_1 +2u; —ujp; = h2f,~, 1<j<n-1,
u=u, = 0. (2.1)

One of the simplest schemes is the Jacobi (or simultaneous displacement) method.
It is produced by solving the jth equation of (2.1) for the jth unknown and using
the current approximation for the (j — 1)st and (5 + 1)st unknowns. Applied to the
vector of current approximations, this produces an iteration scheme that may be
written in component form as

1
N N N B
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To keep the notation as simple as possible, the current approximation (or the
initial guess on the first iteration) is denoted v(©® while the new, updated approx-
imation is denoted v(!). In practice, once all of the v(¥) components have been
computed, the procedure is repeated, with v playing the role of v{%). These iter-
ation sweeps are continued until (ideally) convergence to the solution is obtained.

It is important to express these relaxation schemes in matrix form, as well as
component form. We split the matrix A in the form

A=D-L-U,

where D is the diagonal of A, and —L and —U are the strictly lower and upper
triangular parts of A, respectively. Including the h2? term in the vector f, then
Au = f becomes

(D-L-U)u=f.

Isolating the diagonal terms of A, we have
Du=L+UV)u+f

or
u=D"YL+U)u+D"'f.

Multiplying by D! corresponds exactly to solving the jth equation for u;, for
1 < j <n—1. If we define the Jacobi iteration matrix by

R; =D YL+ U),
then the Jacobi method appears in matrix form as
vl = R;v® 4 D71f.

There is a simple but important modification that can be made to the Jacobi
iteration. As before, we compute the new Jacobi iterates using
. 1

V.

0 0 .
i 2(”3('—)1+”§4,)1+h2fj), 1<j<n-1

However, v} is now only an intermediate value. The new iterate is given by the
weighted average

vJ(.l) =(1- w)v](.o) +wvj = vj(o) + w(vj — vg.o)), 1<j<n-1,

where w € R is a weighting factor that may be chosen. This generates an entire
family of iterations called the weighted or damped Jacobi method. Notice that w =1
yields the original Jacobi iteration.

In matrix form, the weighted Jacobi method is given by (Exercise 3)

v = (1 - W) +wRV® + WD,
If we-define the weighted Jacobi iteration matrix by

Rw=(1—w)I+wRJ,



