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1.1 Graph and simple graph

Examples of graph are not difficult to find. For one, a road map can be interpreted as a
graph, the vertex are the junctions and the edges are the stretch of road from one junctions to
another, similarly an electrical circuit may give us a graph in which the vertex are the terminals
and the edges are the wires. This graph is different from the lines and triangles, cycles in the
geometry, and the painting either. Here, the graph we talk about is present a kind of relation
on a set. For more the exact definition readers may read Discrete Mathematics. It is customary
to represent a graph G by drawing on paper. A graph G is an ordered pair of disjoint sets
(V(G), E(G),¥c), here the set V(G), E(G) are the vertex and the edge set, 1¢ is the incident
functions on V(G) and E(G), that is, if ¢g(e) = wv we say e incident with u and v. The
vertices u and v are the end vertices of edge e, in other words, uv is an edge of G, we say u and
v are adjacent. Two edges are adjacent if they have exactly one common end vertex.

We give an example to familiar the reader with the graph and associated terminologies.

G = (V(G), E(G),¥q), here V(G) = (v1,v2,v3,v1), E(G) = (e1,e2,e3,€4,e5) and g is
defined as Yg(e1) = vive, Ya(e2) = vaus, Yo (es) = vavg, Y (ea) = vav1, Ye(es) = vavyg, then
this graph is showed in Fig 1.1.

Vq

€y
Vi €5 V3

&) e,

V2
Fig 1.1 a simple graph
1



2 The Fundamental Theory Of Graphs

If more than one edge incident the same vertex, then we call graph has multi-edges, and
if the end vertices are same of an edge, then we call the edge is a loop. In this book, we only
think about the edges that do not have a direction. If a undirected graph without loops and
multi-edges we call this graph is a simple graph. The number of vertices of a graph G we
denoted as the order of G; the number of edges of a graph G we denoted as the size of G. For
convince, we take n as the order of a graph and m the size of a graph in this book. Usually we
denote n = |V(G)| and m = |E(G)|.

Now, we denote several kind of graphs that has very interesting properties:

If a graph of order n without edge we call it an empty graph write as E™.

A graph of order n and size C2 or C(n,2) in some books is called a complete graph. This
graph is denoted by K™. In K™, every two vertices are adjacent, the graph K' = E! is said
to be trivial graph. A graph (G is called a bipartite graph with vertex class Vi, V3, if, and each
edge joins a vertex of V7 to Va. K,,, is a complete bipartite graph on n + m vertices, in fact,
it is a special case of general bipartite graph. The set of vertices adjacent to a vertex u € G is
denoted by I'(u). The degree of a vertex u is denoted as d(u) = |I'(u)|. The minimum degree
of a graph is denoted by 4(G) and 4 for short; the mazimum degree by A(G) and A for short,
if A =6 = k we call this graph is k regular.

Example

In fig 1.1 minimal degree & = 2, maximal degree A = 3.

We say that H = (V',E’) is a subgraph of G = (V,E) if V' C V and E' C E. In this
case, we write H C . If H contains all edges of G that join two vertices in V' then H is
said to be the subgraph induced by V’ and is denoted by G[V’]. If H contains all the vertices
that incident with the edges E’ then we say H is a sub-graph induced by E’ and is denoted by
G[E'). If V! =V then H is said to be a spanning subgraph of G. To example, we give several
subgraphs.

Example

A subgraph, an induced subgraph by edges, an induced subgraph by vertex and a spanning
subgraph. Vi = {v1,vq,v4}, E1 = {e1,€e3,e5} in graph 1.1 H,G[V1],G[E1] are Fig 1.2, Fig 1.3
and Fig 1.4 respectively.

V4
V4

e s
€3

v ' Vy v V2
Fig 1.2 subgraph of G Fig 1.3 vertex induced Fig 1.4 edge induced
graph G[V'1] graph G[E1]
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In order to give readers a wide bases, we give more terminologies, we call a subgraph A is
a clique if A C V(G) and every pairs of vertices are adjacent. In the sequent sections, we will
know it is a complete graph. On the other hand, if non vertices are adjacent in A we call A is an
independent set. We denote ¢(G) is the clique number of a graph witch is the maximal number
of vertices of all cliques of G, and a(G) is the maximal independent number of a graph.

Similar to the clique and independent set on vertex, we can extent these definitions to the
edge set, we call complete matching and an edge covering. We will study these in chapter 6 for

more information.

1.2 Graph operations

Sometimes, we study the properties of a graph by studying another graph get by trans-
forming the original graph. We will study the spectrum of graphs in chapter 1. calculate the
number of its spanning tree of a graph in chapter 3, calculate the matching number of graphs,
study the relation between the matching polynomial of a graph and the characteristic polynomial
of its path tree and study the coloring number of a graph in chapter 6. Here, we first present
some operations on graphs.

1. deleting an edge or a vertex from G, denoted as G-e or G-v.

2. subdivision an edge or split a vertex.

3. put two graphs together, write as Gy U Gs.

4. contracting graph by an edge, delete an edge and put two end vertex together all other

vertex and edges keep same.

5. complete product(some books call it joint)G1 7 G2 of G1 and G? is the graph obtained

from G1 U G2 by joining every vertex of G, with every vertex of Ga.

In the following chapter, we may study the different polynomials defined on these trans-
formations. In this section, we study the properties on following transformations.

Definition 1.1  The complement of G, denoted by G, is the graph with V(G) = V(G°)
such that two vertices are adjacent in G¢ if and only if their are not adjacent in G.

Obviously, |V(G)| = |V(G®)| and |E(G)| + |E(G°)| = C(n,2) = n{n — 1)/2. We will have

more interesting results in the later chapters about the complement graph and with itself.
U

Fig 1.5 graph G and the graph delete e and split from u
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Example

We give another example for subdivision and contract by an edge of graph.

¢ © o =0
N -
1 ! ~ -7
1 { b e
______________ ‘}______#______4, S
X
€ | | [AEN
| | 4 A
’ N
| 1 s \
| I 4 N
| | 4 \
I I 4 N
/ A
& o 6—r—o«——0

Fig 1.7 the graph obtained by subdivision e and split from e

Example

We construct a new graph from the original one by a simple transformations. Besides
these, we also have several special operations these are very important in studying the graph
properties. The line graph L(G) of an undirected graph G is another graph L(G) that represents
the adjacency between edges of G. The line graph is also sometimes called the edge graph, the
adjoint graph, the interchange graph, or the derived graph of G. In Spectra of Graphs, readers
may find more graph transformations like the direct sun, the complete product, the product and
the total graph, etc.

Definition 1.2 Given a graph G, its line graph L(G) is a graph such that each vertez
of L(G) represents an edge of G; and two vertices of L(G) are adjacent if and only if their
corresponding edges share a common endpoint ( “are adjacent” ) in G.

We give an example for general simple graph G and its line graph L(G). We can easily
find an edge of G correspond to an vertex of its line graph L(G). In the graph above edge e
correspond to the vertex v of L(G). The degree of v of L(G) satisfies below formula

d(v) = d(v;) + d(vj) — 2,e = (uv)

Obviously, the edge set of L(G) is the edge set of G. The size of G became the order of its line
graph. The size of L(G) satisfy following equation.

BE(L(G) = Y d(w:)
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We may give this formula and let the readers proof this as an exercise in the end of this

chapter.
BL(G)) = 3 dled) = 5(3 & — 2m)

In Fig 1.8, the number of edges of the line graph is 14. If G is k-regular, then L(G) is 2k —2
regular. Besides this, the maximal matching, the independent vertex set, the color number, the
connectivity and the character polynomial of G and L(G) are studied by many mathematicians.
In section 1.6, we will prove that the eigenvalues of a line graph L{G) are not less than —2.
Here, we cite several results about the characteristic polynomials of regular graphs. In the next
section, we will give the proof of this theorem.

Theorem 1.1([36]) If G is a k-regular graph with n vertices and m edges, P(G, \) is the

characteristic polynomial of its adjacent matriz, then
p(L(G), ) = (A +2)" "p(G, A -k +2)

It is interesting that the number of triangles in graph G and its line graph L(G) has
below relationship. Let us denote the triangle number of G and L(G) as A(G) and A(L(G)),
respectively, then .

A(L(G)) = A(G) + > C(d;,3)
i=1
where d; is the degree of vertex v; in G.

We give an example of this formula here.

A semi-regular bipartite graph is a bipartite graph, Let V;, V3 be two parts of V(G), d(v) = s
if v € V1; d(v) =t if v € Vo, then Shu jinlong has following theorem:

Theorem 1.2([37]) L(G) is a connected regular graph if and only if G is a connected
graph or semi-regular graph.

Let G 7 G2 (the complete product) denote the joint of Gy and G2 obtained by adding all
possible edges uv,u € G1 and v € Ga.

Fig 1.8 The number of triangles in G and its line graph

Theorem 1.3([38]) Let Gi1 and Gy are ki-regular graph and ka-regular graph,

respectively, and k1 — k2 = nq — na, where ny and ng are the order of G1 and Ga, respectively,
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then the quai-Laplacian polynomial of Gy VvV Gy is L((G1 VvV Gz2),z) =

(Z — T —nNg — kl — kz)(nz —-—Nn1— T+ 2k1)(n1 — Ny — T+ 2’62)
(iE — k1 — ko — 2)('7’),2 -+ 2]62)(')’?,1 — T+ 2’62)
The matching polynomial and characteristic polynomial is connected by the graph and its

L(Gl,.’t — nz)L(Gg, T — ’I’Ll).

path tree.(see chapter 6) Here, we only give the definition and several simple results.

Definition 1.3 The path tree T(G,u) of G take vertex u as its root, if :

1. V(T(G,u))=all the paths start from u include u itself;

2. E(T(G,uw))=(P;, F;) if one path is contained in the other mazimally.

We give an example in Fig 1.9. Obviously, a path tree of P, is P,, Zhang hailiang in
[39] gave the path tree of several type of graph and studied the relation of the largest zero of
matching polynomial. In [4] and in [21], Ma haicheng proved that the largest zero of a graph’s

matching polynomial equals the largest zero of characteristic polynomial of its path tree. Zhang

hailiang gave following properties of several path tree of certain graphs.

N . U, Uy u

U U,

Fig 1.9 A simple graph and its path tree

Theorem 1.4 1. The path tree of C,, is Pan_1;

2. The path tree of Q(s,t) 18 Ts—1,s—1,4—1, 0T Te_2,t-1,64¢—1 0T Ti 41 5-1,4—1,5, wherei+j =

s—1.

Let the n vertices of the given graph G be wg,v1,...,v,. The Mycielski graph of G
contains G itself as an isomorphic subgraph, together with n + 1 additional vertices: a vertex
u; corresponding to each vertex v; of GG, and another vertex w. Each vertex u; is connected by
an edge to w, so that these vertices form a subgraph in the form of a star K; . In addition,

for each edge v;v; of G, the Mycielski graph includes two edges, u,v; and v;u;.

Thus, if G has n vertices and m edges, My(G) has 2n + 1 vertices and 3m + n edges.
Mycielski’s construction is applied to a 5-vertex cycle we get a graph which is called the Grotzsch
graph. this graph has 11 vertices and 20 edges. The Grotzsch graph is the smallest triangle-free
4-chromatic graph (Chv 4 tal 1974). Zhang hai liang in [18] studied the matching polynomial
and matching equivalent graphs of this graph.
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1.3 Isomorphism

Two graph are isomorphic if there is a correspondence between their vertex sets that
preserves adjacency. Thus G = (V, E) is isomorphic to G’ = (V', E’), we denoted by G = ¢,
or simply G = G’. If there is a bijection ¢ : V — V' and ¢ : E(G) — E(G’) such that
Ye(e) = wv if and only if Y (¢(e)) = 6(u)b(v), clearly isomorphic graphs has the same order
and size, usually we do not distinguish between isomorphic graphs, unless we consider graphs
with a distinguished or labeled set of vertices.

Definition 1.4 A graph is said to be self-complementary if G =2 G°.

We have below properties about self-complement graphs.

Theorem 1.5 A graph is self-complementary then v = 0, lmod(4).

Fig 1.10 gives two isomorphic graph.

Fig 1.10 two isomorphic graph

1.4 Incident and adjacent matrix

A graph can be represent as a matrix in the computer science. This section we will give
matrix theory used in graph theory and build a strong connection between matrix and a graph,
first, we start this section with define the adjacency matrix of a graph:

Definition 1.5 The adjacency matrizx A(G) of a simple graph G whose vertex set is
{vi,va,...,vn}is a square matriz of order n .Whose entry a;; at the place (%,7) is equal to
the numbers of edges incident with the v;,v;, for simple graph that is 0 or 1. We shall write
A = (aij).

Since this matrix is a symmetric matrix, then it has several properties as below:

Theorem 1.6 All eigenvalues of A are real numbers.

Proof. Let A be an eigenvalue of A and P is the associated eigenvectors of A. A and p be the

conjugate of A and p, respectively, then

Apt.p = p'(Ap) = p*Ap
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since A is symmetric then
(Ap)'p = (Ap)'p = Mp'p
Ap'p = Ap'p
and pp > 0 so A is real number.

We can also use the associate law of matrix multiplication and the equation

p'Ap = \p'p

to proof this theorem.

Theorem 1.7 For every symmetric matriz A there is an orthogonal matriz P such that
PYAP = diag(A1, A2, ..., An), A; are the eigenvalues of A.

Proof. According to theorem 1.5, we know that A has an eigenvector v1, we can as-
sume |lv1]] = 1, and by using the Gram-Schmidt procedure we can find an orthogonal basis
B={v1,v2,...,v,} with the eigenvector v; as the first element. Let Py = {vz,v3,...,v,} the
dim(Py) = n— 1 Since v; is an eigenvector of T4 with the eigenvalue A;, then AP also a sym-
metric transformation, by the introduction, (v1,vs,...,v,) is a orthogonal basis for A. Then
by the well know theorem of diagonalizable theorem we finish proving our proof.

The diagonalizable theorem is that if a matriz of order n has n different eigenvectors then
this matriz can be diagonalizable.

Definition 1.6 The incident matriz M(G) of graph G is a n X m matriz M = M(G),

its row is the set of vertices and the columns is the set of edges, and whose entries are given by

1 if v; and e; are incident
mi; = ’ !
i — .
0, olherwise

Example

The adjacency matrix and the incident matrix of graph 1.1 are

AG) = and M(G) =

_- 0 = O
—_— e O
—_ O = O
[ B R
o O =
(R e )
e = =]
- O o ©
= O =

respectively.

Definition 1.7 A matriz is said to be totally unimodular if every minors of order k is
0,—1,1.

In fact, we can easily proofed the incident matrix of a simple graph is totally unimodular

by the induction on the order of the minors of the matrix.
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Theorem 1.8 (Egervary 1931) G is bipartite if and only if M is totally unimodular.

The characteristic polynomial of adjacent matrix of a graph G is defined as the character-
istic polynomial of G, write as p(G, ), sometimes p(G) for short.

Definition 1.8 The spectrum of a graph G is the set of numbers which are eigenvalues
of A(G), together with their multiplicities.If the distinct eigenvalues of A(G) are Ao > A

> ... > An_1,and their multiplicities are m(Xo),m(M),. .., m(M—1),then we shall write:

Ao A e Ana )
m()\()) m(/\l) m()\n_l)

SpecG = (

The spectrum of graph 1.1 is

-2 0 2
Spect(G):( L 9 1)

Suppose that A is an eigenvalue of A, then since A is real and symmetric, it follows that
) is real,and the multiplicity of A as a root of the equation det(A] — A) = 0 is equal to the
dimension of the space of eigenvectors corresponding to A. The main question arising is this:how
much information concerning the structure of G is contained in its spectrum, and how can this
information be retrieved from the spectrum? .

Theorem 1.9 (Hand-shaking lemma) For a graph Zd(vi) = 2¢e, where € is size of a

i=1

graph.

Proof. Since every edge gives two degrees to a pair of adjacent vertices of a graph, so the
sum of degree is twice of the numbers of E of G.

Corollary 1.1 (Hand-shaking theorem) In any graph the number of odd degree vertices
8 even.

Proof. Assume Vi, Vs represent the odd degree vertices set and the even degree vertices

set, respectively, by the Theorem 1.9 we have:

Z d(v) + Z d(v) = 2¢

veEV; vEV2

The right side of this equation is even, as to the left side Z d(v) is even , so Z d(v) must be

vEVs vEV]
a even number, but in which every degree of vertex is odd, so in order to grantee the summation

is even, the number of vertices must be a even number.
If V(G) = (v1,v2,.--,Vn), then we say d(v;),d(vs),...,d(vy) is the degree sequence of G.

This sequence must have below property.
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 Theorem 1.10 For positive integer sequence d(v1),d(vs),...,d(v,) is a degree sequence

of a graph if and only if Zd('v,-) is even.

i=1

~ Proof. Necessity is obvious by the theorem 1.9. Now we prove the sufficient condition, for
kL3

Z d(v;) is even by the hand shaking theorem there must have even number of vertex which

i=1
as odd degree, then we can construct a graph as below: For the even degree vertex v; we draw

d(v;)/2 loops on v;; for the odd degree vertices v; we draw (d(v;) —1)/2 loops and connect every
two odd degree vertices with an edge, by the hand shaking theorem there are even number of

odd degree vertices, hence, this graph satisfy the condition.

1.5 The spectrum of graph

In this section, we give an expression of characteristic polynomial. We explain the connec-
tion of graph structure and the coefficients of characteristic polynomial.Some of results come

from the matrix theory directly.
Lemma 1.1([7]) Let A = (a;;) € R™*", then

k
AT — A= X"+ 3 (—1)Fpean*
k=1

where bg(k =1,2,...,n) is the summation over all principle minors of order k, especially,
by = a1 + a2+ ...+ ann, bn = 4]

Proof. Let E = (e1,€32,...,en), A= (a1,a2,...,a,),where e; and ; are the ¢ — th columns

of unity matrix F and matrix A, respectively, then
AT — A| = |(Ae1 — a1, Aea — a, . .. ,b)\en — an)|
expand this determinant we have:
|AI — A] = A%|(e1,€2,...,€n)| — M1 Z |€1y-- ) i1, iy €ig1y--n n|+ ...

HEDEARE YT (@i 80y, )+ (ST A

1€ <. Sk sn
Where

|(---1ai1’--',aik)-")|

represent the two column of adjacent matrix of A, the others are columns of unity matrix I.
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Theorem 1.11([4]) Let p(G, ) = |\ — A] = A"+ a1 A" +... +a, be the characteristic

polynomial of an arbitrary undirected multi-graph G. then

al="Y (-1)P .27 (3=1,2,...,n)
Uel;

We call following graphs “elementary figure”

1. the graph Ko, or

2. every graph Cy(q > 1) (loops being included with g = 1)
call a “basic figure” U every graph all of whose components are elementary figures; let p(U), c(U)
be the number of components and the number of circuits contained in U, respectively, and U;
denote the set of all basic figures contained in G having exactly i vertices.

This theorem may be given the following form:
Define the “contribution” b of an elementary figure E by b(K32) = —1,b(C,) = (—1)9" -2 and

basic figure U by b(U) = H b(E),then (—1)a; = Z b(U).
EcU Uel;
Proof. Let us first consider the absolute term

\

an = Pg(0) = (—-1)"|4] = (-1)"|a:|
According to Leibniz definition of the determinants,

e
an = Z(‘l)n+ Flars, a2, - - - Aniy
P

For the sake of simplicity, let us first assume that there are no multiple arcs so that a;x =0 or
1 for all i, k. A term

SP = (—1)"+I(P)a1i1 A2y - - - Ang,

of the sum is different from zero if and only if all of the arcs (1,41),(2,42),...,(n,in) are

contained in G, P may be represented as a product:

P=(1)(..)(.)(.)

of disjoint cycles. Evidently, if Sp # 0, then to each of cycle of P there are corresponds a
cycle in G: thus to P, there corresponds a direct sum of (non-intersecting) cycles containing
all vertices of G.i.e., a linear directed sub-graph L € L,. Conversely: to each linear directed
subgraph L € L, there corresponds a permutation P and a term Sp = +1, the sign depending

only on the e(L) of even cycles among all cycles of L:

Sp = (—1)mted)



