# 贵州省自然科学优秀学术论文集

**Guizhou Collection of Excellent Academic Thesis**of Natural Science

(2005年版)

贵州省科学技术协会 Guizhou Association For Science And Technology

## 贵州省自然科学优秀学术论文评审奖励委员会

主任委员:欧阳自远

副主任委员: 肖伦祥

委 员: (按姓氏笔划排列)

于 杰 王明成 王国昌 朱立军

刘丛强 任湘生 伍鹏程 陈叔平

李 祥 李桂莲 周万成 周惠明

## 贵州省自然科学优秀学术论文理、工、农、医、交叉学科专家评审组

理科组组长: 刘丛强 副组长: 俞 建

工科组组长:于杰 副组长:杜剑平

农科组组长:李桂莲 副组长:官国倍

医科组组长: 周惠明 副组长: 程明亮

交叉学科组组长: 任湘生 副组长: 张继泽

## 贵州省自然科学优秀学术论文集 (2005年版)编委会

主 编: 肖伦祥

编 委: 杜培术 田 雪 周 燕

刘 军 胡铁磊

责任编辑: 刘军 胡铁磊

### 序

2005年,是贯彻落实科学发展观,努力实现贵州经济社会又快又好发展的关键之年,也是实施"十一五"规划的开局之年。为了贯彻落实胡锦涛总书记在全国科技大会上的重要讲话精神,动员我省广大科技工作者和社会各方面力量,共同推进我省科技事业的发展,为提高自主创新能力,建设创新型国家,实现我省经济社会发展的历史性跨越作出新贡献,贵州省科学技术协会组织开展了"移动通信杯"首届贵州省自然科学优秀学术论文的评审奖励工作。

省直有关部门,高等院校,科研院所,企业事业单位,省级学会、协会、研究会及各市、州、地科协,积极参与、支持和配合论文的筛选及推荐工作。本届评审奖励活动共收到论文 306 篇,涵盖了理、工、农、医、交叉学科五大领域,从不同行业、不同学科开展了全方位、多角度的学术研究,论文内容丰富,涉及专业众多,从不同层面反映了我省科技工作者的学术水平和研究成果,为最终评选出我省高质量、高水平的优秀学术论文奠定了坚实的基础。

贵州省科协为保证本届评审奖励活动的顺利有序进行,专门成立了贵州省自然科学优秀学术论文评审奖励委员会及贵州省自然科学优秀学术论文理、工、农、医、交叉学科专家评审组,选聘我省各学科领域的多位知名专家对论文进行认真评审。在严格掌握标准,宁缺毋滥的原则下,使评审奖励工作做到了"公平、公开、公正"。经专家认真工作,达到了预期目标,遴选出了优秀学术论文一等奖 5 篇,二等奖 20 篇,三等奖 40 篇,提名奖 11 篇,较好地体现了我省这一时期的学术研究水平。

"移动通信杯"首届贵州省自然科学优秀学术论文的评审奖励工作在全社会产生了较大、较好的影响,为广大科技工作者做了一件实事、好事,搭建了学术交流和服务广大科技工作者的平台。开展贵州省自然科学优秀学术论文评审奖励活动,对促进全省学术繁荣、学科发展、人才成长和科技进步,全面实施人才强省战略,建立完善科协的表彰激励机制,充分调动广大科技工作者的积极性和创造性,为我省的经济建设和社会发展起到了积极的推动作用。

这次评审奖励活动得到贵州省及贵阳市移动通信公司的鼎力支持,并冠名"移动通信杯",为评审工作的圆满成功提供了有力保障。这是建立和完善科技评审奖励机制的有益尝试,引起了社会各界的高度关注,吸引了省内企业的积极参与,为科协的改革和发展进行了一次较为成功的探索。

"移动通信杯"首届贵州省自然科学优秀学术评审奖励活动取得圆满成功,是与社会各界的大力支持和积极参与分不开的。值此《贵州省自然科学优秀学术论文集(2005年版)》付梓之际,谨向获奖的论文作者表示热烈的祝贺!向积极参与评审奖励活动并付出辛勤劳动的专家、工作人员及有关单位表示诚挚的谢忱!

贵州省科协主席中国科学院院士

欢阳的

二00六年二月

### 目 录

| 一等奖                                                                         |
|-----------------------------------------------------------------------------|
| Faddeev-Jackiw 方法对非对易性研究·····隆正文,荆坚(1)                                      |
| 琵琶湖水体不同分子量溶解有机质组分中分子荧光和氨基酸特征研究吴丰昌,田上英一郎,刘丛强(5)                              |
| 水稻 micro RNA 的分离、克隆及鉴定························王嘉福,周惠,陈月琴,罗庆军,屈良鹄(15)        |
| 虫生菌物 Cordyceps jiangxiensis 菌体及多糖的深层培养条件优化··················肖建辉,陈代雄,刘金伟(25) |
| 数字影像会诊系统的创建及初步应用王学建、胡建、曹军、王波、焦俊、魏渝清、王小林、罗敏、罗松(39)                           |
|                                                                             |
| 二等奖                                                                         |
| P <sub>n</sub> (Γ)一组 Hilbert 基的判定和计算····································    |
| 一种来自于额外维空间的新能源陶必修,吉世印,李芳琼(51)                                               |
| 贵州寒武系的楔叶虫: 一种底栖固着的食肉动物···················彭进,Loren E Babcock,赵元龙,王平丽,杨荣军(58) |
| 铁路振动及其在岩溶塌陷中的致塌力研究程星,黄润秋(67)                                                |
| 中国天山冰芯记录中人类对偏远地区大气的污染李心清,秦大河,江桂斌,段克勤,周会(72)                                 |
| 各种大跨度拟梁式桁架结构的特性与技术经济指标马克俭,郑涛,张华刚,丁婷,郭明明,周观根(87)                             |
| 钛合金表面宽带激光熔覆梯度生物陶瓷复合涂层的动力学研究刘其斌,邹龙江,朱维东,李海涛,董闯(100)                          |
| 自然界中 ZnS-CdS 完全类质同象系列的发现和初步研究····································           |
| 三轴应力条件下红粘土力学特性动态变化的 CT 分析黄质宏,朱立军,蒲毅彬,周训华(112)                               |
| 黔东南州气象灾害对水稻生产影响的研究及对策池再香,白慧,罗顺祯,石宏辉(117)                                    |
| 造林技术措施对马尾松林分生长影响的定量分析与预测温佐吾(121)                                            |
| 玉米〇2 基因内三个微卫星位点的隐性等位变异杨文鹏,郑用琏,倪深,吴菁(126)                                    |
| 两种淡水鱼——草鱼和胡子鲇的肥大细胞许乐仁,杨筱珍,高登慧,江萍(137)                                       |
| 采用十二指肠镜及腹腔镜联合治疗重症胆管炎张翔,秦建国,庞家芳,韩民,苟欣,黄晓锋(143)                               |
| 皮瓣重建阴囊及其对精子发生的影响王达利,郑洪,邓飞(145)                                              |
| 银杏叶提取物对正常大鼠海马 caspase-3 和淀粉样前体蛋白水平的影响罗璨,吴芹,黄燮南,孙安盛,石京山(151)                 |
| 脑卒中患者血管紧张素转换酶基因多态性与心率变异性的关联研究王艺明,刘兴德,董为伟,杨宗城(157)                           |
| 制约逻辑是内涵智能机的逻辑理论基础龚启荣,林邦瑾(162)                                               |
| 电力市场环境下发电公司风险管理框架刘敏,吴复立(166)                                                |

#### 三等奖

| 中国蚋属蚋亚属盾纹组分类纪要并三新种记述(双翅目,蚋科)陈汉彬(193)                                       |
|----------------------------------------------------------------------------|
| 中国凹距飞虱族(半翅目:蜡蝉总科:飞虱科)分属检索表及一新属记述                                           |
| Gauss-Markov 条件下最小二乘估计的强相合性金明仲,吴贤毅,金良琼(206)                                |
| 全连续算子谱逼近的后验误差估计杨一都,黄秋梅(213)                                                |
| 新型含氟α-氨基膦酸酯的合成和晶体结构杨松、宋宝安、吴扬兰、金林红、刘刚、胡德禹、卢平(220)                           |
| 用量子受限模型分析硅氧化层中的锗低维纳米结构黄伟其,刘世荣(224)                                         |
| 贵州四个洞穴滴水对大气降雨响应的动力学及意义周运超,王世杰,谢兴能,罗维均,黎廷宇(229)                             |
| 鲤科鲌亚科鳘群鱼类的系统发育及动物地理学代应贵,杨君兴(237)                                           |
| 论碳酸盐岩现代风化壳和古风化壳李景阳,朱立军(259)                                                |
| 浅论利用波速测试成果综合选取坝基岩体承载力问题余波,徐光祥(265)                                         |
| 铝基型芯脱芯剂的研究及在航空发动机叶片制造中的应用李林,刘建平(271)                                       |
| GDL-1 型汽车齿轮的微变形、高强韧性材料及热加工工艺的研究与应用········梁益龙,雷旻,陈伦军,张晓燕,高宏(272)           |
| 四角切圆燃烧技术(300MW 机组)首次燃用贵州低挥发份无烟煤的经验····································     |
| 岩溶地区设计洪水计算的探讨杨全明,尹明万,李景海(294)                                              |
| 斜轴式液压泵压力跳动的故障分析与排除梁贵萍(299)                                                 |
| SPOT5 在矿山监测中的应用·······况顺达,赵震海(303)                                         |
| PB7. 0 通用任意字段查询技术的实现····································                   |
| 高抗冲聚苯乙烯的应变率敏感性及粘塑性本构关系蔡长安,于杰,罗筑,刘一春(312)                                   |
| 贵州喀斯特山地坡耕地立地影响因素及分区张喜(318)                                                 |
| 应用细胞自动机(CA)模型研究植物种群在可控制系统中的扩散机制:一年生杂草作为一个应用实例                              |
| 王季槐, M. J. Kropff, B., Lammert, S., Christensen, P. K. Hansen (323)        |
| 小菜蛾对溴氰菊酯的抗性消退与抗性恢复动态李凤良,李忠英,韩招久,陈之浩(333)                                   |
| 黄壤坡地土壤水分入渗垂直变异特征分析蒋太明,肖厚军,刘海隆,刘洪斌(337)                                     |
| 大粒组荞麦种的细胞学、同工酶及种间杂交研究陈庆富,Sai.L.K.Hsam,Friedrich J.Zeller(343)              |
| 利用形态学、RAPD 及 AFLP 标记鉴定刺梨及其近缘种的遗传关系文晓鹏,庞晓明,邓秀新(347)                         |
| 用同位素 <sup>15</sup> N 直接法和间接法研究小麦/蚕豆间作中根系相互作用对种间竞争及氮转移的影响···肖焱波,李隆,张福锁(357) |
| 建设生态畜牧业大省的内涵及路径探讨彭志良,王天生(364)                                              |
| 626 例少数民族育龄妇女避孕现状分析许吟,李裕,鲍优兰(368)                                          |
| 头针及推拿治疗腰椎间盘突出症及其对自身免疫水平的影响崔瑾,向开维,梁永瑛(370)                                  |
| 热休克蛋白 70-肿瘤肽的纯化及其抗小鼠肝癌免疫效应陈代雄,苏艳蓉,邵根泽(374)                                 |
| 白细胞介素 17 在大鼠慢性阻塞性肺疾病和支气管哮喘模型中的变化及意义                                        |
| **************************************                                     |

#### 贵州省自然科学优秀学术论文集(2005年版)

| 1439 例眼外伤病例的临床分析金鸣昌,潘海燕,陶娅,代丽伟,欧阳光明(387)                                        |
|---------------------------------------------------------------------------------|
| 补充 NaFe-EDTA 对学龄儿童青少年贫血及血清铁蛋白水平的影响研究汪思顺,卢启良,王素芳,赵显峰(389)                        |
| 钩藤碱对脑缺血/再灌损伤的保护作用······吴二兵,孙安盛,吴芹,余丽梅,石京山,黄燮南(392)                              |
| 中药泻火养阴散治疗初发弥漫性甲状腺肿大并甲亢 30 例临床观察 … 李雪梅,曹永芬,杨娟,郭茜(395)                            |
| 左-卡尼汀对体外循环心瓣膜替换术患者心肌的保护作用向道康,阎兴治,杨世虞,刘秀伦,胡选义,周涛(398)                            |
| 弓形虫速殖子表膜蛋白的组分和抗原性分析王世海,熊美华,唐丽娜,王秀珍,刘露霞(402)                                     |
| 高校创办科技教育专业及青少年科技教育实践基地的研究钱贵晴,任钢建,谷丽应,董旭,徐文祥,陈爽,李松(405)                          |
| 我国银行业市场竞争结构的实证分析——基于 Panzar-Rosse 范式的考察赵子铱,彭琦,邹康(409)                           |
| 中国人口预测的自回归分布滞后模型研究安和平(415)                                                      |
| 基于 Web 制造执行系统的实现技术······景亚萍(423)                                                |
|                                                                                 |
| 提名奖                                                                             |
| 两种鼠蚤在新羽化和吸血后不同时间三种酶的组织化学研究寻慧,漆一鸣(427)                                           |
| GIS 技术在划分巴西陆稻"IAPAR9"适宜种植区域中的应用郑小波,康为民, 汪圣洪, 吴俊铭(432)                           |
| $^{124}$ Te 核 $1^{\dagger}$ 态和高自旋态能谱特征的微观研究···································· |
| 青藏铁路昆仑山口高含冰量冻土路堑换填保温施工技术                                                        |
| 贵州喀斯特地区洪涝灾害特征及减灾对策王继辉,杨明,顾小林,杨玲,彭桂玉(445)                                        |
| 贵州省毕节地区畜禽寄生虫的区系调查与防治效益                                                          |
| 阮正祥,王勤,曾志明,杨阿莎,何虎,苟中屏,杨廷军,杨福芬,邱声邦,郝琼,江凤霞,朱武清(449)                               |
| 美国水稻品种对稻瘟病小种 IE-1k、IB-33、IB-49 和 IC-17 的抗性遗传 ·····················严宗卜 (452)     |
| 生态农业"三维"复合系统的运行机制与运作方式王秀峰,伍国勇(458)                                              |
| 瘦素、细胞因子及胰岛素抵抗与心功能不全关系的研究                                                        |
| 贵州苗药大果木姜子研究及产业化 · · · · · · · · · · · · · · · · · · ·                           |
| 燃煤型砷中毒患者遗传损伤及癌变机理张爱华,洪峰,黄晓欣,罗鹏,胡昌军,刘忠义,杨光红(475)                                 |

### Faddeev - Jackiw approach to the noncommutativity

#### Zheng-Wen Long 1, Jian Jing 2

1. Department of Physics, GuiZhou University, GuiYang 550025, PR China

2. Theoretical Physics Division, Nankai Institute of Mathematics, Nankai University, Tianjin 300071, PR China

**Abstract**: We apply the Faddeev - Jackiw (FJ) method to the open string in the D-brane background with a nonvanishing B-field. The reduced phase space was obtained directly by solving the mixed boundary conditions. The noncommutativity of coordinates along the D-brane was reproduced. Some ambiguities in the previous papers could be avoided by this method.

Keywords: Faddeev - Jackiw method; String theory; Noncommutativity; Boundary conditions

## Faddeev-Jackiw 方法对非对易性研究

隆正文<sup>1</sup>, 荆坚<sup>2</sup> (1.贵州大学物理系,贵州 贵阳 550025; 2.南开大学数学学院理论物理学处,天津 300071)

对非对易空间的研究,最早可追溯到上世纪四十年代,杨振宁和 H. S. Sngder 等人的工作,那时认为由于引力的存在,时空坐标之间有可能是非对易的,在某些特定的情况下,这种对时空代数的修改会对量子场论的紫外发散行为有所改散,最近这个问题再一次成为理论物理研究的热点问题之一则是由超弦理论的研究引发的,超弦理论的研究表明,D 膜的有效低能理论在 NS-NSB 背景场下,其世界体方向坐标之间满足非对易关系,超弦理论的唯象学猜测,我们所生存的现实空间有可能就是一个 D 膜的世界体,这一点被越来越多的理论物理学家所认同,因此,我们所生存的现实空间有可能就是非对易空间。

我们研究了当存在 NS-NSB 背景场时开弦的端点在 D 膜上的非对易性质, 这个问题是在弦理论中的研究中提出来的, 并且由此掀起了关于非对易几何在理论物理中的研究热潮, 以前对 D 膜表面的非对易的导出, 都是用 Dirac 方法, 将边界条件作为 Dirac 约束来处理, 然而这种初级约束和传统的 Dirac 约束有不同的起源, 传统的 Dirac 约束是由于奇异拉氏量引起的, 将边界条件当作 Dirac 约束来处理会带来取不同的弱收敛形式得到不同的结果以及理论的真实自由度为负无穷等一系列的问题。

我们首次应用 Faddeev-Jackiw 方法对这个问题进行了深入的分析,与先前的大多数文献不同的是,我们对弦空间进行了离散化处理,就避免了有关  $\delta$  函数的问题,通过直接求解边界条件得到约化的相空间,这样就成功地避免了关于处理约束条件的问题,最后我们通过对辛矩阵的计算 ,直接从他的逆矩阵中读出了对易关系,避免了对  $\delta$  函数的正规化处理问题,通过计算我们得到了只有在端点非对易的,这和目前人们普遍接受的观点是一致的,纠正了 M. M. Sheikh, Jabbari 等人用Dirac 方法作出的在端点和端点附近都是非对易的错误。

Noncommutativity has attracted much attention in the past a few years <sup>[1]</sup>. It is widely believed that the open strings attached to D-branes in the presence of background B-field would induce noncommutativity in its end points <sup>[2-4]</sup>. The most conventional way to derive this noncommutativity is to use Dirac brackets <sup>[5]</sup>, which were proposed by Dirac more than half a century, and treat the mixed boundary conditions (BCs) as primary constraints. However, recently there are some renewed interests on this subject <sup>[6,7]</sup>, and some discrepancies appears.

One of the focuses of these ambiguities is how to treat the mixed BCs. In Refs. <sup>[2,4,8]</sup>, these BCs were treated as primary Dirac constraints, subsequently, an infinite set of secondary second class constraints could be obtained by the consistent requirements. It is quite amazing that such circumstances rarely happened before. In a more recent paper <sup>[6]</sup>, the author announced that if the BCs were treated as primary constraints, then the Dirac method would not lead to an infinite set of secondary constraint chains but to a finite one, also, the noncommutative algebras would not appear. So it is necessary to study this problem from another point of view.

The purpose of the present Letter is to analyze this problem in an alternative way, that is, we shall apply

FJ method [9] to this problem. The advantage of this method is that we need not classify the constraints into the so-called primary or secondary, the first class or the second class, so the ambiguities mentioned above could be avoided. We shall work in the discrete version, find the reduced phase directly by solving the mixed BCs, and then read the commutators directly.

The action for an open string with its end points attaching on a D-brane in the presence of NS B-field is (our convention are almost the same as [4])

$$S = \frac{1}{4\pi\alpha'} \int d^2\sigma \left[ g^{\alpha\beta} \eta_{\mu\nu} \partial_{\alpha} X^{\mu} \partial_{\beta} X^{\nu} + 2\pi\alpha' B_{\mu\nu} \epsilon^{\alpha\beta} \partial_{\alpha} X^{\mu} \partial_{\beta} X^{\nu} \right]$$

$$+ \int d\tau A_{\mu} \partial_{\tau} X^{\mu} \Big|_{\sigma=\pi} - \int d\tau A_{\mu} \partial_{\tau} X^{\mu} \Big|_{\sigma=0},$$

$$(1)$$

where  $g_{\alpha\beta} = \text{diag}(-,+)$ ,  $\epsilon^{01} = -\epsilon^{10} = 1$ ,  $B_{\mu\nu} = -B_{\nu\mu}$ ,  $\eta_{\mu\nu} = \text{diag}(-,+,\dots,+)$ , and the length of string is  $\pi$ . In the case of both the end points attaching on the same D-brane, the last two terms can be written as

$$-\frac{1}{2\pi\alpha'}\int d^2\sigma \, F_{\mu\nu}\epsilon^{\alpha\beta}\partial_{\alpha}X^{\mu}\partial_{\beta}X^{\nu}$$

and the action (1) is

$$S = \frac{1}{4\pi\alpha'} \int d^2\sigma \left[ g^{\alpha\beta} \eta_{\mu\nu} \partial_{\alpha} X^{\mu} \partial_{\beta} X^{\nu} + 2\pi\alpha' \mathcal{F}_{\mu\nu} \epsilon^{\alpha\beta} \partial_{\alpha} X^{\mu} \partial_{\beta} X^{\nu} \right], \tag{2}$$

where  $\mathcal{F} = B - F = B - dA$ , which is invariant under both U(1) gauge transformation,  $A \to A + d\lambda$ , and the so-called  $\Lambda$  translation,  $A \to A + \Lambda$ ,  $B \to B + d\Lambda$ . Without loss of any generality, we put the electric mixing, i.e.,  $\mathcal{F}_{0\mu} = \mathcal{F}_{\mu 0} = 0$  [4], and for the sake of simplicity, we set  $2\pi\alpha' = 1$  and recover it when it is necessary. The variation of (2) gives both the equation of motion and the mixed BCs, respectively,

$$\left(\partial_{\tau}^{2} - \partial_{\sigma}^{2}\right) X^{\mu} = 0, \tag{3}$$

$$\left(\partial_{\sigma} X^{\mu} - \mathcal{F}^{\mu}_{\nu} \partial_{\tau} X^{\nu}\right)_{\sigma=0,\pi} = 0. \tag{4}$$

In Refs. [2.4.8], the above BCs are treated as primary constraints, and the Dirac's methods were used to derive the noncommutative algebras. Because these BCs are only valid on the D-brane's world volume, so some singularities just as  $\delta(\sigma)$  or  $\delta(\sigma-\pi)$  (or even the derivatives of these terms) must be introduced [3]. It is also a tedious task to find all the constraints and then calculate the Dirac brackets. In order to avoid such singularities and the calculation of Dirac brackets, we shall work in the discrete version, which means that we discretize  $\sigma$ , and denote the steps by  $\varepsilon = \pi/N$ , so that the continuum theory can be obtained by taking the limit  $\varepsilon \to 0$  or  $N \to \infty$ .

The action and the BCs in the discrete version are

$$S = \frac{1}{4\pi\alpha'} \int dt \left[ -\sum_{i=0}^{N} \varepsilon \eta_{\mu\nu} \dot{X}_{i}^{\mu} \dot{X}_{j}^{\nu} + \sum_{i=0}^{N-1} \frac{1}{\varepsilon} \eta_{\mu\nu} (X_{i+1} - X_{i})^{\mu} (X_{i+1} - X_{i})^{\nu} + 2\mathcal{F}_{\mu\nu} \sum_{i=0}^{N-1} \dot{X}_{i}^{\mu} (X_{i+1} - X_{i})^{\nu} \right],$$
(5)

$$\frac{1}{\varepsilon}(X_1 - X_0)^{\mu} - \mathcal{F}^{\mu}{}_{\nu}\partial_{\tau}X_0^{\nu} = 0, \tag{6}$$

$$\frac{1}{\varepsilon}(X_{\pi} - X_{\pi - \varepsilon})^{\mu} - \mathcal{F}^{\mu}{}_{\nu}\partial_{\tau}X^{\mu}_{\pi} = 0, \tag{7}$$

and the equations of motion in this discrete form are

$$\varepsilon \partial_t^2 X_0^{\mu} = \frac{1}{\varepsilon} (X_1 - X_0)^{\mu},\tag{8}$$

$$\varepsilon \partial_t^2 X_i^{\mu} = \frac{1}{\varepsilon} (X_{i+1} - 2X_i + X_{i-1})^{\mu}, \quad i \neq 0, N, \tag{9}$$

$$\varepsilon \partial_t^2 X_\pi^\mu = \frac{1}{\varepsilon} (X_\pi - X_{\pi - \varepsilon})^\mu. \tag{10}$$

From the above discrete version of BCs, we see that it is sufficient for us only to take two points, say,  $X_0^{\mu}$ ,  $X_1^{\mu}$  (for the other end, the analysis is almost the same, we only give our results) into consideration.

The action for these two points in the discrete form are

$$S = \frac{1}{4\pi\alpha'} \int dt \left[ -\eta_{\mu\nu} \varepsilon \dot{X}_0^{\mu} \dot{X}_0^{\nu} - \eta_{\mu\nu} \varepsilon \dot{X}_1^{\mu} \dot{X}_1^{\mu} + \frac{1}{\varepsilon} \eta_{\mu\nu} (X_1 - X_0)^{\mu} (X_1 - X_0)^{\nu} \right. \\ \left. + \frac{1}{\varepsilon} \eta_{\mu\nu} (X_2 - X_1)^{\mu} (X_2 - X_1)^{\nu} + 2 \mathcal{F}_{\mu\nu} \dot{X}_0^{\mu} (X_1 - X_0)^{\nu} + 2 \mathcal{F}_{\mu\nu} \dot{X}_1^{\mu} (X_2 - X_1)^{\nu} \right]. \tag{11}$$

Now there are two methods to proceed on. One is the traditional Dirac method. It takes the BCs(6) (or(7)) as the Hamiltonian primary constraints <sup>[4,8]</sup> in which the Lagrange multipliers are introduced in order to construct the so-called total Hamiltonian and then exhaust all the constraint chains or determine the Lagrangian multipliers by the consistent requirements, finally the commutation relations can be obtained by calculating Dirac brackets. However, a new feature beyond the ordinary Dirac context would appear if we treat the BCs as the Dirac primary constraints <sup>[4,8]</sup>, that is the Lagrange multipliers are determined by the consistent requirement while the constraints chains are not terminated. It is quite amazing that such situations rarely happened before. In a recent paper <sup>[6]</sup>, the author finds that in the Dirac context, if the BCs are treated as the primary constraints, then the constraint chains are not infinite but finite, and the noncommutative algebras will not appear, furthermore, the author stress that the noncommutative algebras will not appear even if one insist that the constraint chains are infinite. So in this Letter we shall analyze this problem by using the Faddeev – Jackiw method.

According to  ${\rm FJ}^{(9)}$ , we shall find the reduced phase space and re-express the action(11) in a first-order form in this reduced phase space. In doing so, we solve the BCs(6) and substitute the BCs(6) into the Lagrangian(11), the reduced phase space is obtained and the action which is related with the  $X_{ii}^{0}$  is written as the first-order form

$$S = \frac{1}{2} \int dt \left[ \left( \mathcal{F}^{-1} M \right)_{\mu\nu} (X_1 - X_0)^{\mu} \dot{X}_0^{\nu} + \mathcal{L}_{X_1} \right]. \tag{12}$$

where  $M = 1 - \mathcal{F}^2$ , and

$$\mathcal{L}_{X_1} = -\eta_{\mu\nu} \epsilon \, \dot{X}_1^{\mu} \dot{X}_1^{\nu} + 2\mathcal{F}_{\mu\nu} \dot{X}_1^{\mu} (X_2 - X_1)^{\nu} + \frac{1}{\varepsilon} \eta_{\mu\nu} (X_2 - X_1)^{\mu} (X_2 - X_1)^{\nu}. \tag{13}$$

Because the BCs (6) are not complicated, it is easy to find the reduced phase space directly by solving BCs (6), and we are allowed to work in this reduced phase space, so the introduction of the conjugate momenta ( $P_{0\mu}$ ) to the point  $X_0^{\mu}$  is not needed.

point  $X_0^{\mu}$  is not needed. As there are no constraints on the variables  $X_{1\mu}$ , the Lagrangian  $\mathcal{L}_{X_1}$  is treated in the standard way, that is, we introduce the conjugate momenta  $P_{1\mu}$  to  $X_{\mu}$ . It is defined as usual,

$$P_{1\mu} = \frac{\delta S}{\delta \dot{X}_{1}^{\mu}} = \mathcal{F}_{\mu\nu} (X_{2} - X_{1})^{\nu} - \epsilon \dot{X}_{1\mu}, \tag{14}$$

and the Hamiltonian corresponding to  $\mathcal{L}_{X_1}$  is

$$\mathcal{H}_{X_1} = P_{1\mu} \dot{X}_1^{\mu} - \mathcal{L}_{X_1}$$

$$= -\frac{1}{2\epsilon} P_{1\mu} P_1^{\mu} - \frac{1}{2\epsilon} M_{\mu\nu} (X_2 - X_1)^{\mu} (X_2 - X_1)^{\nu} + \frac{1}{\epsilon} P_1^{\mu} \mathcal{F}_{\mu\nu} (X_2 - X_1)^{\nu}. \tag{15}$$

Hence, the Lagrangian  $\mathcal{L}_{X_1}$  is written in the first-order form as

$$\mathcal{L}_{X_1} = P_{1\mu} \dot{X}_1^{\mu} - \mathcal{H}_{X_1}. \tag{16}$$

where the Hamiltonian  $\mathcal{H}_{X_1}$  had been given in (15)

We have 'translated' the action (11) into the first-order form,

$$S = \int dt \left\{ \frac{1}{2} (\mathcal{F}^{-1} M)_{\mu\nu} (X_1 - X_0)^{\mu} \dot{X}_0^{\nu} + P_{1\mu} \dot{X}_1^{\mu} - \mathcal{H}_{X_1} \right\}. \tag{17}$$

A set of symplectic variables,  $\xi_i^{\mu} = (X_0^{\mu}, X_1^{\mu}, P_1^{\mu})$ , and the corresponding canonical one-form

$$a_{i\mu} = \left(\frac{1}{2} (\mathcal{F}^{-1}M)_{\nu\mu} (X_1 - X_0)^{\nu}, P_{1\mu}, 0\right)$$

can be read from action (17). These result in the symplectic two-form matrix f

$$(f_{\mu\nu})_{ij} = \frac{\partial (a_{\nu})_j}{\partial (\xi^{\mu})^i} - \frac{\partial (a_{\mu})_i}{\partial (\xi^{\nu})^j}.$$
 (18)

According to the FJ, if the matrix f is regular, then the commutators can be read from the inverse of it directly. To show how the FJ method works, for the sake of simplicity and without loss of generality, we restrict ourselves to the D2-brane<sup>[4]</sup>, in this case  $\mu$ ,  $\nu$ = 1,2 and the f is a 6×6 matrix. After some simple calculations, we give the explicit expression of the matrix below,

$$f = \begin{pmatrix} 0 & -\frac{1}{2\pi\alpha'}(\mathcal{F}^{-1}M)_{12} & 0 & \frac{1}{4\pi\alpha'}(\mathcal{F}^{-1}M)_{12} & 0 & 0\\ \frac{1}{2\pi\alpha'}(\mathcal{F}^{-1}M)_{12} & 0 & -\frac{1}{4\pi\alpha'}(\mathcal{F}^{-1}M)_{12} & 0 & 0 & 0\\ 0 & \frac{1}{4\pi\alpha'}(\mathcal{F}^{-1}M)_{12} & 0 & 0 & -1 & 0\\ -\frac{1}{4\pi\alpha'}(\mathcal{F}^{-1}M)_{12} & 0 & 0 & 0 & 0 & -1\\ 0 & 0 & 1 & 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 0 & 1 & 0 & 0 \end{pmatrix}.$$
(19)

Here we recover the coefficient  $2\pi\alpha'$  explicitly. Obviously, f is not singular provided  $\mathcal{F}_{\mu\nu}$  no vanishing, hence the inverse of this matrix exists,

$$f^{-1} = \begin{pmatrix} 0 & 2\pi\alpha'(M^{-1}\mathcal{F})_{12} & 0 & 0 & \frac{1}{2} & 0 \\ -2\pi\alpha'(M^{-1}\mathcal{F})_{12} & 0 & 0 & 0 & 0 & \frac{1}{2} \\ 0 & 0 & 0 & 0 & 0 & \frac{1}{2} \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ -\frac{1}{2} & 0 & -1 & 0 & 0 & \frac{1}{8\pi\alpha'}(M^{-1}\mathcal{F})_{12} \end{pmatrix}$$
(20)

From the above matrix  $f^{-1}$ , we can read the following commutators,

$$\{X_0^{\mu}, X_0^{\nu}\} = 2\pi\alpha' (M^{-1}\mathcal{F})^{\mu\nu}, \qquad \{X_0^{\mu}, X_1^{\nu}\} = 0, \qquad \{X_1^{\mu}, X_1^{\nu}\} = 0,$$

$$\{X_0^{\mu}, P_{1\nu}\} = \frac{1}{2}\delta_{\nu}^{\mu}, \qquad \{X_1^{\mu}, P_{1\nu}\} = \delta_{\nu}^{\mu}.$$

$$(21)$$

For the other end, the action in the discrete form are

$$S = \frac{1}{4\pi\alpha'} \int dt \left[ -\eta_{\mu\nu} \varepsilon \dot{X}^{\mu}_{\pi} \dot{X}^{\nu}_{\pi} - \eta_{\mu\nu} \varepsilon \dot{X}^{\mu}_{\pi-\varepsilon} \dot{X}^{\mu}_{\pi-\varepsilon} + \frac{1}{\varepsilon} \eta_{\mu\nu} (X_{\pi} - X_{\pi-\varepsilon})^{\mu} (X_{\pi} - X_{\pi-\varepsilon})^{\nu} \right. \\ \left. + \frac{1}{\varepsilon} \eta_{\mu\nu} \left( X^{\mu}_{\pi-\varepsilon} - X_{\pi-2\varepsilon} \right)^{\mu} (X_{\pi-\varepsilon} - X_{\pi-2\varepsilon})^{\nu} + 2 \mathcal{F}_{\mu\nu} \dot{X}^{\mu}_{\pi} (X_{\pi} - X_{\pi-\varepsilon})^{\nu} \right. \\ \left. + 2 \mathcal{F}_{\mu\nu} \dot{X}^{\mu}_{\pi-\varepsilon} (X_{\pi-\varepsilon} - X_{\pi-2\varepsilon})^{\nu} \right]. \tag{22}$$

The boundary conditions and the equation of motion have been given in(7), (10), the analysis can be done in the same manner, and the final results are

$$\begin{aligned}
\left\{X_{\pi}^{\mu}, X_{\pi}^{\nu}\right\} &= -2\pi\alpha' \left(M^{-1}\mathcal{F}\right)^{\mu\nu}, & \left\{X_{\pi}^{\mu}, X_{\pi-\varepsilon}^{\nu}\right\} &= 0, \\
\left\{X_{\pi}^{\mu}, P_{(\pi-\varepsilon)\nu}\right\} &= \frac{1}{2}\delta_{\nu}^{\mu}, & \left\{X_{\pi-\varepsilon}^{\mu}, P_{(\pi-\varepsilon)\nu}\right\} &= \delta_{\nu}^{\mu}.
\end{aligned} \tag{23}$$

Our results mainly agree with that of [4,8], except a little difference, there, not only the end points, but also the points which are neighbouring to the end points (i.e.,  $X_1^{\mu}$  or  $X_{\pi-\varepsilon}^{\mu}$ ) are also noncommutative.

#### Acknowledgement

This work is supported by the National Natural Science Foundation of China with grant No. 10247009.

#### References

- [1] N. Seiberg, E. Witten, JHEP 99009 (1999) 032, hep-th/9908142.
- [2] C. S. Chu, P. M. Ho, Nucl. Phys. B 550 (1999) 151, hep-th/9812219.
- [3] C. S. Chu, P. M. Ho, Nucl. Phys. B 568 (2000) 447, hep-th/9906192.
- [4] F. Ardalan, H. Arfaei, M. M. Sheikh-Jabbari, Nucl. Phys. B 576 (2000) 578, hep-th/9906161.
- [5] P. A. M. Dirac, Lecture Notes on Quantum Mechanics, Yeshiva University, New York, NY, 1964.
- [6] F. Loran, Phys. Lett. B 544 (2002) 199.
- [7] W. He, L. Zhao, Phys. Lett. B 532 (2002) 345, hep-th/0111041.
- [8] M. M. Sheikh-Jabbari, A. Shirzad, Eur. Phys. J. C 19 (2001) 383.
- [9] L. D. Faddeev, R. Jackiw, Phys. Rev. Lett. 60 (1988) 1691.

## Fluorescence and amino acid characteristics of molecular size fractions of DOM in the waters of Lake Biwa

F. C. WU<sup>1, 3</sup>, E. TANOUE<sup>2</sup> and C. Q. LIU<sup>1</sup>

<sup>1</sup>The State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang/Guizhou, 550002, China; <sup>2</sup>Department of Earth and Environmental Sciences, Graduate School of Environmental Studies, Nagoya University, Nagoya, 464 - 8601, Japan; <sup>3</sup>Current address: Environmental and Resource Studies, Trent University, 1600 West Bank Drive, Peterborough, K9J 7B8, Ontario, Canada

Abstract. Dissolved organic matter (DOM) in the waters from Lake Biwa, Japan was fractionated using tangential flow ultrafiltration, and subsequently characterized by fluorescence properties and amino acids. While major dissolved organic carbon (DOC), UV absorbance (Abs), humic-like fluorescence (Flu) and total hydrolyzed amino acids (THAA) occurred in the less than 5 kDa molecular size fraction, they were not evenly distributed among various molecular size fractions. Flu/Abs ratios increased, and THAA/DOC ratios decreased with decreasing molecular size. Humic-like fluorescence occurred in all molecular size fractions, but protein-like fluorescence only occurred in the 0.1 µ m-GF/F fraction. Subtle differences in amino acid compositions (both individuals and functional groups) were observed between various molecular size fractions, this may indicate the occurrence of DOM degradation from higher to lower molecular weight. The results reported here have significance for further understanding the sources and nature of DOM in aquatic environments.

Key words: Amino acids; Degradation; Dissolved organic matter; Fluorescence; Fractionation

## 琵琶湖水体不同分子量溶解有机质组分中分子 荧光和氨基酸特征研究

吴丰昌1,田上英一郎2,刘丛强1

- (1. 中国科学院地球化学研究所环境地球化学国家重点实验室;
  - 2. 日本名古屋大学环境科学研究生院地球与环境科学系)

溶解有机质在水生态系统中具极其重要的功能,它不仅是物质能量和营养组分循环的重要途径、而且控制着有毒污染物的化学形态、毒性和生物吸收。因此,一直是国际环境科学领域的热点之一,是当前水环境污染控制和生态修复技术中关键的基础理论和科学问题。本文运用测向超滤将水体中溶解有机质分离成不同分子量组分,详细研究了不同组分的分子荧光、氨基酸组成特征和循环规律,系统地揭示了溶解有机质中分子量分布、物理结构和化学组成之间的内在关系。该研究对认识溶解有机质的生物地球化学循环、生态环境效应和功能具重要意义。

结果表明:溶解有机碳、紫外吸收、腐殖质荧光和总水解氨基酸主要分布在小于 5 千道尔顿 (Da)分子量的有机组分中。但是,它们在不同分子量有机组分中的分布是不均匀的。随着分子量的减小,其组分的荧光与紫外吸收的比值,及总氨基酸与总有机碳的比值都增大。腐殖质荧光分布在所有不同分子量组分中,而类蛋白荧光只分布在大分子量组分中。同时该论文还发现了不同分子量有机组分中氨基酸化学组成(单个组成和功能团特征)存在着显著差别,暗示存在分子量从大到小的溶解有机质降解过程,及来源差异性。结果对进一步认识水环境中溶解有机质的源和本质有十分重要的意义。

目前,我们对有关溶解有机质中物理化学特征和分子量大小之间关系的认识还很少。该论文为认识荧光和氨基酸组成之间关系的研究提供了一些新的线索。结果表明,0.1 μ m - GF/F 分子量有机组分含有相对高含量的氨基酸,特别含有相对高含量的酸性和芳香族类型氨基酸。不同分子量大小有机组分之间氨基酸相对组成的差别明显。所有有机组分含有类似的腐殖质荧光特征,但特殊的类蛋白荧光特征只存在于 0.1 μ m - GF/F 分子量的有机组分中。因此,0.1 μ m - GF/F 分子量有机组

分很有可能是现代生物来源,代表了新近产生的有机物质,而较低分子量的有机组分则经历了较大程度的降解作用。

#### Introduction

In aquatic environments, molecular mass distribution and characteristics of DOM have been reported in terms of elemental (C, N) and isotopic (¹³C and ¹⁴C) composition, fluorescence and absorbance (Smith 1976; Stewart and Wetzel 1980; Carlson et al. 1985; Hart et al. 1992; Guo et al. 1994; Martin et al. 1995; Guo and Santschi 1996; Mopper et al. 1996; Guo and Santschi 1997). These studies showed that although major DOC was mainly in the less than 5 kDa molecular size fractions, and minor DOC in the >0.1 µm fractions, the chromophoric properties and chemical compositions of DOM were not evenly distributed among different molecular size fractions. Recent studies on metal binding characterization (Salbu et al. 1987; Orlandini et al. 1990; Hart et al. 1992; Guo et al. 1994; Martin et al. 1995; Wu et al. 2001; Wu and Tanoue 2001a) also indicated that there did exist evident differences in the properties and nature of DOM in different molecular size fractions.

Recently, three dimensional excitation/emission (Ex/Em) matrix spectroscopy (3DEEM) has been used successfully to probe the chemical structure of DOM due to its ability to distinguish different classes of organic matter (Coble et al. 1990; Senesi 1990; Mopper and Schultz 1993; Del Castillo et al. 1999; Mayer et al. 1999). HPLC has been also used to detect amino acid compositions in studies of DOM biogeochemical cycling in aquatic environments (Robertson et al. 1987; Berdie et al. 1995; Colombo et al. 1998; Wu and Tanoue 2001b). These methods, however, have never been used to investigate various molecular size fractions of DOM.

In this paper, an initial investigation was carried out to explore fluorescence and amino acid characteristics, and the possible interrelationship of various molecular size fractions of DOM. 3DEEM and HPLC, coupled with both acid and alkaline hydrolysis, were used. Tangential flow ultrafiltration was used to fractionate DOM, which has been demonstrated to be a promising fractionation method for DOM(Carlson et al. 1985; Guo et al. 1994; Guo and Santschi 1996). Water samples from Lake Biwa were chosen as a case study.

#### Materials and methods

#### Sampling

We selected two sampling stations in the north basin of Lake Biwa; Stations A (70m depth), and B (40 m depth), located in the northeast and southwest regions of the basin, respectively. Lake Biwa (35° 00′ -35° 30′ N, 135° 50′ -136° 15′ E) is the largest freshwater source in Japan with a surface area of 674 km², a maximum depth of 104 m and a mean depth of 41 m. It is composed of two basins; the large, deep and mesotrophic North Basin and the small, shallow and eutrophic South Basin. Seasonal stratification usually occurs from April to January in Lake Biwa (Miyajima et al. 1997). Water samples were collected in June 1999, and were filtered through glass-fiber filters (GF/F, Whatman, Maidstone, UK) immediately after sampling, and stored at 2° C. The GF/F filtrate was then fractionated using a tangential flow ultrafiltration system (Minitan II system, Millipore Co. Ltd) with Durapore (0.1  $\mu$ m pore size) and Biomax (cutoff membrane, molecular size 5 kDa) membranes successively. About 15-201 of original water was concentrated to 200-400 ml in each fraction, namely, 0.1 $\mu$ m-GF/F and 5 kDa-0.1  $\mu$ m. The  $\langle$ 5 kDa fraction was not concentrated. The fractionation was carried out within 2 days after GF/F filtration, and the fractions were then kept frozen until further analysis. The system was carefully pre-cleaned following the manufacturer's instructions.

All fractions were analyzed for DOC, fluorescence and absorbance. DOC concentration was measured by a high temperature catalytic oxidation method using potassium hydrogen phthalate as a standard; After the water sample was acidified with HNO3, and the DIC was removed by bubbling with pure air for 15 minutes,  $200 \,\mu$ l of sample was injected into TOC analyzer (TOC 5000A, Shimadzu Co. Ltd) (Wu et al. 2001). System and pure water (Milli-Q TOC, Millipore Co. Ltd) blanks were, on the average,  $2-4\,\mu$  MC and  $6\,\mu$  MC, respectively.

Fluorescence was measured with 3DEEM using a fluorescence spectrophotometer (Hitachi, Model F-4500). The excitation wavelength ranged from 240 nm to 400 nm (5 nm bandwidth), and the emission from 250 nm to 600 nm (2 nm bandwidth). Each sample was scanned three times, and the resulting spectra were smoothed and averaged. The spectra were subsequently normalized to water Raman Scattering area, and  $Matlab^{TM}$  was used to obtain the normalized 3DEEM surface and contour plots, in which Ex/Em maxima can be identified. Instrumental correction was made according to the manufacturer's instructions. UV absorbance of samples was measured at wavelength 254 nm using

a spectrophotometer (Shimadzu, MPS-2400, UV-vis multipurpose) equipped with a 2 cm quartz cell.

#### Amino acid analysis

Individual amino acid concentrations were determined by pre-column o-phthaldialdehyde (OPA) derivatization and separation of the components by HPLC and fluorescence detection (Lindroth and Mopper 1979). For acid hydrolyzable amino acids, 2 ml water samples were hydrolyzed at  $110^{\circ}$ C for 22 h in 6N HCl. The hydrolysate was then diluted, neutralized with cooled 2N NaOH, and reacted with an OPA fluorescent tag for HPLC analysis. A reference mixture of 17 standard amino acids including aspartic acid (Asp), glutamic acid (Glu), serine (Ser), histidine (His), glycine (Gly), threonine (Thr), arginine (Arg), tyrosine (Tyr), alanine (Ala), methionine (Met), valine (Val), phenylalanine (Phe), isoleucine (Ile), leucine (Leu), ornithine (Orn), lysine (Lys) and proline (Pro) was used to assign the identities. Due to the nonlinear response, Orn, Lys and Pro were ignored. Since tryptophan (Trp) was not stable in the acid hydrolysis, alkaline hydrolysis was applied before HPLC analysis. For alkaline hydrolysis, ascorbic acid was added as antioxidant, and water samples were first hydrolyzed in 4.2N NaOH at  $110^{\circ}$ C for 16 h; The hydrolysate was then diluted, and neutralized to pH = 9 with cooled 2N HCl, reacted with a fluorescent tag and analyzed for tryptophan in a similar manner (Wu and Tanoue 2001b). The recovery of tryptophan was  $91\pm3.3\%$  (n = 4). The analytical precision expressed as standard deviation from multiple standard injections of 25  $\mu$ 1 was less than 0.8% for Val, Met, Ile, Phe and Leu, 1.2—1.9% for Ser, His and Gly, 2.0 - 4.7% for Glu, Thr, Ala, Arg, Trp and Tyr, and 9.9% for Asp (Wu and Tanoue 2001b).

#### Results and discussion

#### Molecular size distribution of DOC, absorbance and fluorescence

The distribution of DOC, absorbance and fluorescence of the fractionated DOM is shown in Table 1. As determined by DOC concentration, the relative abundance of the  $\langle 5 \text{ kDa} \rangle$  fraction ranged from 55 to 69% of the total DOC, 5 kDa-0.1  $\mu$ m fraction from 30 to 43%, and 0.1  $\mu$ m-GF/F fraction from 1 to 2% (Table 1), indicating that most DOC was in the  $\langle 5 \rangle$  kDa fraction. Relative DOC abundance in the  $\langle 1 \rangle$  kDa fraction ranged from 50 to 78% in oceanic environments (Carlson et al. 1985; Guo et al. (1994, 1995); Guo and Santschi 1996). For freshwater, Martin et al. (1995) reported that only 43% of total DOC was in the  $\langle 1 \rangle \rangle$  kDa fraction in Lena River. These results suggest that the relative abundance of DOC in the lower molecular size fractions varied among different environments. In terms of UV absorbance at 254 nm, the  $\langle 5 \rangle \rangle$  kDa fraction accounted for 57 - 85% of the total DOM, which was slightly higher than those (55-69%) determined by DOC. For humiclike fluorescence, the  $\langle 5 \rangle \rangle$  kDa molecular size fraction was also dominant, accounting for 74-88% of the total fluorescence. The recoveries for DOC, absorbance and fluorescence ranged from 84% to 121%, which are similar to the previous reports on DOC (80-118%, Carlson et al. (1985) and Guo et al. (1994, 1995), Guo and Santschi (1996)). Ultrafiltration systems that gave good fluorescence or absorbance balances may have poor DOC mass balances since fluorescence and absorbance techniques are more selective and thus may miss contaminants (Buesseler et al. 1996; Mopper et al. 1996). Good balances from all fluorescence, absorbance, DOC and THAA in this study indicate the validity of the ultrafiltration system used.

As seen in Table 1, Flu/Abs abundance ratios increased from 0.1  $\mu$  m-GF/F to 5 kDa-0.1  $\mu$  m, to the <5 kDa molecular size fraction, suggesting that the distribution was shifted towards the lower molecular fractions for humic-like fluorescence, as compared to UV absorbance. This is in agreement with previous reports that fluorescence efficiency or Flu/Abs ratios of DOM increased with reducing molecular weight (Stewart and Wetzel 1980; Ewald et al. 1988; Senesi 1990). The difference also implies that fluorescing and absorbing DOM was not evenly distributed over various molecular weights in freshwater.

#### 3DEEM fluorescence characteristics of molecular size fractions

The normalized 3DEEM surface and contour plots of the fractionated DOM are shown in Figure 1. Two general Ex/Em maxima can be observed in these plots: Peak A with Ex/Em 320 - 350/430 - 460 nm, and Peak B with Ex/Em 230 - 250/430 - 470 nm. Part of the Peak B fluorescence was obscured by water Raman Scattering. Peaks A and B were similar to previous reports for DOM fluorescence in aquatic environments, and were usually referred to as humic-like fluorescence (Mopper and Schultz 1993; Coble 1996; Del Castillo et al. 1999; Wu et al. 2001).

It is interesting to note that an additional Peak C with Ex/Em 260 - 290/330 - 350 nm was obvious only in the

Table 1. Mass balances of DOC, absorbance, fluorescence and THAA of molecular size fractions of DOM in Lake Biwa.

| 74        | A THE PARTY OF THE | adirocation (annual)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ACTUAL TO SECURITY OF THE SECU | ada sara mastrons on                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | SOLK IN KINE MING.   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| Samples   | Fractions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | DOC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Absorbance a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Fluorescence *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | THAA d               | Ratios                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |            |
| *         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | μ M C a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | at 254 nm(10 <sup>-4</sup> cm <sup>-1</sup> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Ex/Em 330/434                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Concentration (nM) * | Flu/Abs °                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | THAA/DOC * |
| Station B |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
| 2.5 m     | GF/F filtrate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 104                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 160                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1106                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (1.1)      |
|           | $0.1~\mu\mathrm{m}\text{-GF/F}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2 (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10 (7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.4 (5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (2) 69               | 0.6 (0.04)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3.5 (3.3)  |
|           | $5 \text{ kDa-}0.1 \mu \text{m}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 40 (43)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 50 (36)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.8 (21)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 411 (42)             | 0.6 (0.04)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.0 (1.0)  |
|           | < 5 kDa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 51 (55)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 80 (57)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 6.4 (74)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 500 (51)             | 1.3 (0.08)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (0.1) 6.0  |
|           | Sum of 3 fractions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 93 (100)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 140 (100)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 8.6 (100)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (001) 086            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
|           | Recovery (%) b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 121                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 68                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
| 70 m      | GF/F filtrate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 132                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 8.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 975                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (1.1)      |
|           | $0.1~\mu \text{m-GF/F}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.0(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4 (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.2 (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 83 (8)               | 0.6 (0.05)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 8.0 (8.0)  |
|           | 5 kDa- $0.1~\mu m$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 28 (30)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 18 (12)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.0 (10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 302 (29)             | 0.8 (0.06)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.0 (1.1)  |
|           | < 5 kDa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (69) 59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 125 (85)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 8.4 (88)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 655 (63)             | 1.0 (0.07)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.9 (1.0)  |
|           | Sum of 3 fractions 94 (100)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 94 (100)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 147 (100)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 9.6 (100)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1042 (100)           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
|           | Recovery (%) b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 106                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Ш                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 114                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 107                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
| Station A |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
| 2.5 m     | GF/F filtrate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 107                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 190                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 8.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1530                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (1.4)      |
|           | 0.1 µm-GF/F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | .5 (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10 (6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.5 (5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 156 (11)             | 0.8 (0.05)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5.5 (7.8)  |
| *         | 5 kDa-0.1 μm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 47 (40)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 30 (19)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.9 (18)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 540 (38)             | (90.0) 6.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.0 (1.1)  |
|           | < 5 kDa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 67 (58)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 120 (75)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 8.1 (77)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 724 (51)             | 1.0 (0.07)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.9 (1.1)  |
|           | Sum of 3 fractions 116(100)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 116(100)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 160 (100)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10.5 (100)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1420 (100)           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
| ×         | Recovery (%) b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 108                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 107                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 93                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
|           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | the second secon | The second secon | The second secon |                      | The second secon |            |

was expressed as a proportion of the sum of all fractions relative to the value for the GF/F filtrate. 'The unit was arbitrary. 'THAA denoted total hydrolyzed amino "The value was estimated as that in the original water. The value in the parentheses denoted that of each fraction as a percentage of the sum for all fractions. Becovery acids. 'Ratios were based on their relative abundance, and the values in the parentheses were based on their contribution.



Figure 1. 3DEEM surface and contour plots of molecular size fractions of DOM in Lake Biwa. The fluorescence was calibrated by water Raman scattering. The fractions were the same as those in Table 1.

other natural waters (280/325 - 335 nm, Coble et al. (1990); 270/320 nm, Mopper and Schultz (1993); 270/320 nm, Determann et al. (1994) and Wu et al. (2001)), and was usually referred to as protein-like fluorescence. Determann et al. (1994, 1998) reported that some phytoplankton, picoplankton and bacteria were the major sources of protein-like fluorescence in natural aquatic environments. Our results are consistent with those reports since the 0.1  $\mu$  m-GF/F fraction may possibly include small phytoplankton and bacteria particles.

Thus, differences in fluorescence properties were evident for different molecular size fractions of DOM. The humic-like and protein-like fluorescence was shifted to the lower and higher molecular size fractions, respectively.

## Amino acids in various molecular size fractions, and their relationship with fluorescence characteristics

Total hydrolyzed amino acids (THAA) included total acid hydrolyzed amino acids and alkaline hydrolyzed tryptophan. THAA concentrations and composition in various molecular size fractions of DOM are shown in Tables 1 and 2. The mass balance ranged 89 - 107%, and was again satisfactory. The <5 kDa molecular size fraction accounted for 51 - 63% of total THAA, indicating that major THAA were in the <5 kDa fraction. This result is similar to fluorescence and absorbance distribution discussed earlier. However, THAA/DOC ratios increased with increasing molecular size (Table 1), showing that THAA were more heavily weighted in the higher molecular size fractions than in the lower molecular fractions.

Molar percent ratios of individual amino acids in THAA in different molecular size fractions were analyzed to identify differences in composition (Figure 2, Table 2). It is shown that the most abundant species were Ala, Asp, Glu, Gly and Ser in all molecular size fractions, accounting for 53.4-58.4% of total THAA.

Amino acids in different molecular size fractions have not been well documented in aquatic environments. At present, only a few studies have been done in freshwaters, and these have mainly focused on comparison between particulate and dissolved fractions (Mayers et al. 1984; Coffin 1989; Berdie et al. 1995). Amino acids have been extensively studied in bulk DOM, sediments and particulate in aquatic environments (Siezen and Mague 1978; Lee and Cronin 1984; Steinberg et al. 1987; Burdige and Martens 1988; Colombo et al. 1998; Dauwe and Middelburg 1998). These previous studies demonstrated that despite overall similarity of amino acid composition in sediments, particulate and setting particle in the water column, evident differences (composition and concentration) with depth existed, indicating organic matter degradation. It was also reported that glutamic acid, aromatic tyrosine and phenylalanine were labile, while glycine, serine and threonine were selectively preserved in degradation.





Figure 2. The average relative abundances of amino acids and their functional groups in molecular size fractions of DOM in Lake Biwa.

Our data (Table 2 and Figure 2a) show that the relative abundance of aspartic acid and glutamic acid decreased with reducing molecular size (from 0.1 μ m-GF/F, to 5 kDa-0.1 μ m, to the <5 kDa fractions), while that of glycine and serine increased. This finding may imply that amino acids were good biomarkers for DOM degradation, possibly tracing the occurrence of organic matter degradation from higher to lower molecular weight. This is strongly supported by the higher nitrogen abundance and lability of higher molecular size fractions of DOM in recent studies (Hollibaugh and Azam 1983; Harvey et al. 1995), and is also consistent with the fact that THAA contribution to total DOC decreased from the higher to lower molecular size fractions (Tablel), as this may suggest the preferential removal of THAA relative to organic carbon during degradation. The fluorescence results discussed in earlier sections also support our suggestion since the < 0.1 \mu m fractions were dominated by humic-like fluorescence, which was reportedly resulted from refractory organic materials (Mopper and Schultz 1993; Determann et al. 1994); only the 0.1μm-GF/F fraction had the protein-like fluorescence, which was linked to recent biological origin (e.g. Traganza (1969) and Mopper and Schultz (1993)). Moran et al. (2000) observed that protein-like fluorescence was increased during DOM biological degradation experiments, suggesting that biological degradation would not be possibly responsible for the DOM degradation from higher to lower molecular weight. Photochemical degradation may be the most likely process as this has been widely reported to play key roles in controlling the degradation of DOM in aquatic environments (e.g. Zepp (1998) and Moran et al. (2000)).