[l 5D B % 4 % A

FZ2EDhR) 79

Harold M. Edwards

Fermat's Last Theorem

A Genetic Introduction to
Algebraic Number Theory

vty K Ht

REEILRREF5

=P 4 4 & B i



EsSFELERIIFER) 79

Fermat’s Last Theorem

A Genetic Introduction to Algebraic Number Theory

HOLKEE
RAEER B 2]

Harold M. Edwa,; dls




E=: 01-2011-3334

Harold M. Edwards: Fermat’s Last Theorem: A Genetic Introduction to Algeberaic

Number Theory
© Springer-Verlag Berlin Heidelberg 1977

This reprint has been authorized by Springer-Verlag (Berlin/Heidelberg/New
York) for sale in the People’s Republic of Chipa only and not for export
therefrom.

7% 53 SCRZ B AL b 78 )t T AR L R RIRA R . SRR H AR T 1
i, AMRLMERT XIS RABREMEL . A BNREPEARL
MEHE, SMEHO, REETE, BERLI,

EHERSR B (CIP) &iE

BLREE: REELHELE F5]= Fermat’s Last Theorem: A Genetic
Introduction to Algeberaic Number Theory / (38) 3 ##:%% (Edwards, H. M.)
. —RER. —dem: RHEFEHMRE, 2011

(H S %23 7515 79)
ISBN 978-7-03-031384-3
[@% - LOZ- ILOBRTGAEE-FEL V. ©O156

o [ iR A B 518 CIP #dE#52(2011) % 105010 5

FriEhE A ER HBE/FEPRA: KRR/ Rt % ]

4 4 % BB QiR
TR FEERALET 16 5
HRBURES: 100717
http://www.sciencep.com

ARATRREA DA KA ET]
REEHAMEAT  RIFE B EE
ki

20114F6 A% — R FF&. BS5(720 x 1000)
2011 4F 6 ASB—KETR  Epsk: 27
EP¥L: 1—2 000 FH: 520000
EfHr: 68.00 T
(nAHENEE R R, At TR



(ESMBFERERT) (RER)F

BEFRENEEE VL EFHRRER, FEEEZIRIPEFFAT HERE
BH. B—HE, RITWEAEN FABERLEEA KR REEE I #5HE
FiE, XFEBERMBEMBFF VR SRENE, ERERABENTIESE
&M, HhialEsE SmmEesn HR TR,

M T ERHE, BT BaFE b AR EAT B 2 RERS, SIEES S
HRY T H R EBE S UAT D, WEEERBEL, LA Springer)th AL
ZAR AR BB R d Rk, RHE W RRAL R ED—AEABAT AR AT S BT
B, FEREREERBUBMRANERE, Fal R X TN E
TR WPy, TEERXHESIREHENBI S8 A RRE,

XRPE M RAL K T UL, —RET 23 Ak th At R e
H, BE—MFE, WREBREMT ENER, KiEES—T, X 235$H+,
AIEREMPEES 5 A, NARES 6 AEHERES 24, HPFESRRA
XM, XA, 2000 LU HRE S RE S, it 164, H
RIHR 1990 ELUR AR o X864 7T DIGERR BE R T AR 3L 7 R AR
BlanERECE P HEos . RESHIP=F, BEHRTMREERMEN “Her
BREH” KoM XTAFX T I REEER TR RS 25 RA T
By, HEBERORS, ERBCERMEL 2l hE, MAMTERERKSH
DL By RE. XEHREESHEEERMZNABER, fla (HEbE) —
BHTEERBER R BRI TRl EBmbi L, B3R “FIREL” A “RIRREEER
X SR BE AR T EER 2 B RN R R B3R ¥ 4 R4 SAE R

4R, 23 A4 R ECAN RS, LA, XU TAREN AR T
Wit , ASRE TR B BRI B SR, A EREEER .

B2, BXTBLE A R BT AR A AR B B AR X — 2 PR R
PHr, FFREX— TAEBUSE RH RS

I
200512 A3 H



Preface

Since it is likely that many people will open this book wanting to know
what the current state of knowledge about Fermat’s Last Theorem is, and
since the book itself will not answer this question, perhaps the preface
should contain a few indications on the subject. Fermat’s Last Theorem is
of course the assertion (not a theorem) that the equation x"+y"=z" has
no solution in positive whole numbers when n>2. It is elementary (see
Section 1.5) to prove that x*+ y*=z* is impossible. Therefore the original
equation is impossible whenever n is divisible by 4. (If n=4k then
x"+y"=2z" would imply the impossible equation X*+ Y*=Z* where
X=xk, Y=y* and Z=z*) Similarly, if x™+y™=:z™ can be proved to
be impossible for any particular m, it will follow that the original equation
is impossible for any »n that is divisible by m. Since every n>2 is divisible
either by 4 or by an odd prime, in order to prove Fermat’s Last Theorem it
will suffice to prove it in the cases where the exponent n is a prime.

For the exponent 3, the theorem is not too difficult to prove (see
Chapter 2). For the exponents 5 and 7 the difficulties are greater (Sections
3.3 and 3.4), but the theorem can be proved by essentially elementary
methods. The main topic of this book is the powerful theory of ideal
factorization which Kummer developed in the 1840s and used to prove the
theorem at one stroke for all prime exponents less than 100 other than 37,
39, and 67. Specifically, Kummer's theorem states: Let p be an odd prime.
A sufficient condition for Fermat’s Last Theorem to be true for the exponent
P is that p not divide the numerators of the Bernoulli numbers B,,
By,...,B, ;. (See Sections 5.5 and 6.19.) A prime which satisfies Kummer’s
sufficient condition is called “regular.”

Since 1850, work on the theorem has centered on proving more and
more inclusive sufficient conditions. In one sense the best known sufficient
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conditions are now very inclusive, and in another sense they are very
disappointing. The sense in which they are inclusive is that they include all
primes less than 100,000 [W1]. The sense in which they are disappointing is
that no sufficient condition for Fermat’s Last Theorem has ever been shown
to include an infinite set of prime exponents. Thus one is in the position of
being able to prove Fermat’s Last Theorem for virtually any prime within
computational range, but one cannot rule out the possibility that the
Theorem is false for all primes beyond some large bound.

The basic method of the book is, as the subtitle indicates, the genetic
method. The dictionary defines the genetic method as “the explanation or
evaluation of a thing or event in terms of its origin and development.” In
this book | have attempted to explain the basic techniques and concepts of
the theory, and to make them seem natural, manageable, and effective, by
tracing their origin and development in the works of some of the great
masters—Fermat, Euler, Lagrange, Legendre, Gauss, Dirichlet, Kummer,
and others.

It is important to distinguish the genetic method from history. The
distinction lies in the fact that the genetic method primarily concerns itself
with the subject—its ‘“explanation or evaluation” in the definition
above—whereas the primary concern of history is an accurate record of
the men, ideas, and events which played a part in the evolution of the
subject. In a history there is no place for detailed descriptions of the theory
unless it is essential to an understanding of the events. In the genetic
method there is no place for a careful study of the events unless it
contributes to the appreciation of the subject.

This means that the genetic method tends to present the historical
record from a false perspective. Questions which were never successfully
resolved are ignored. Ideas which led into blind alleys are not pursued.
Months of fruitless effort are passed over in silence and mountains of
exploratory calculations are dispensed with. In order to get to the really
fruitful ideas, one pretends that human reason moves in straight lines from
problems to solutions. I want to emphasize as strongly as I can that this
notion that reason moves in straight lines is an outrageous fiction which
should not for a moment be taken seriously.

Samuel Johnson once said of the writing of biography that “If nothing
but the bright side of characters should be shown, we should sit down in
despondency, and think it utterly impossible to imitate them in anything.
The sacred writers related the vicious as well as the virtuous actions of
men; which had this moral effect, that it kept mankind from despair.” This
book does, for the most part, show only the bright side, only the ideas that
work, only the guesses that are correct. You shouid bear in mind that this
is not a history or biography and you should not despair.

You may well be interested less in the contrast between history and the
genetic method than in the contrast between the genetic method and the
more usual method of mathematical exposition. As the mathematician
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Otto Toeplitz described it, the essence of the genetic method is to look to
the historical origins of an idea in order to find the best way to motivate it,
to study the context in which the originator of the idea was working in
order to find the “burning question” which he was striving to answer [T1].
In contrast to this, the more usual method pays no attention to the
questions and presents only the answers. From a logical point of view only
the answers are needed, but from a psychological point of view, learning
the answers without knowing the questions is so difficult that it is almost
impossible. That, at any rate, is my own experience. I have found that the
best way to overcome the difficulty of learning an abstract mathematical
theory is to follow Toeplitz’s advice and to ignore the modern treatises
until I have studied the genesis in order to learn the questions.

The first three chapters of the book deal with elementary aspects of the
question of Fermat’s Last Theorem. They are written at a much more
elementary level than the rest of the book. I hope that the reader who
already has the mathematical maturity to read the later chapters will still
find these first three chapters interesting and worthwhile, if easy, reading.
At the same time, I hope that the less experienced reader who must work
his way more gradually through the first chapters will in the course of that
reading acquire enough experience to enable him, with effort, to make his
way through the later chapters as well.

The next three chapters, Chapters 4-6, are devoted to the development
of Kummer’s theory of ideal factors and its application to prove his
famous theorem, stated above, that Fermat’s Last Theorem is true for
regular prime exponents. This is as far as the present book takes the study
of Fermat’s Last Theorem. I plan to write a second volume to deal with
work on Fermat’s Last Theorem which goes beyond Kummer’s theorem,
but these later developments are difficult, and Kummer’s theorem is a very
natural point at which to end this volume.

The final three chapters deal with matters less directly related to
Fermat’s Last Theorem, namely, the theory of ideal factorization for
quadratic integers, Gauss’s theory of binary quadratic forms, and Dirich-
let’s class number formula. To study Kummer’s work on Fermat’s Last
Theorem without studying these other aspects of number theory would be
as foolish as to study the history of Germany without studying the history
of France. Kummer was aware at the very outset of his work on ideal
theory that it was closely related to Gauss’s theory of binary quadratic
forms. While the application to Fermat’s Last Theorem was one of
Kummer’s motives for developing the theory, others (and by his own
testimony more immediate ones) were the quest for the generalization of
quadratic, cubic, and biquadratic reciprocity laws to higher powers, and
the explication of Gauss’s difficult theory of composition of forms. More-
over, Kummer’s amazingly rapid development of his class number formula
and his discovery of the striking relationship between Fermat's Last
Theorem for the exponent p and the Bernoulli numbers mod p, were, as he
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says, made possible by Dirichlet’s solution of the analogous probiem in the
quadratic case. The genetic method suggests—almost demands—that these
other issues be exploited in motivating the difficult but enormously fruitful
idea of “ideal prime factors” that is so essential to an understanding of
Kummer’s work on Fermat’s Last Theorem. Moreover, the material of
these final three chapters provides a necessary background for the study of
the higher reciprocity laws and class field theory which, in turn, are the
context of the later work on Fermat’s Last Theorem to be studied in the
second volume.

In this book there is a good deal of emphasis, both in the text and in the
exercises, on computation. This is a natural concomitant of the genetic
method because, as even a superficial glance at history shows, Kummer
and the other great innovators in number theory did vast amounts of
computation and gained much of their insight in this way. I deplore the
fact that contemporary mathematical education tends to give students the
idea that computation is demeaning drudgery to be avoided at all costs. If
you follow the computations of the text attentively and if you regard the
more computational exercises not only as time-consuming (which they will
inevitably be) but also as challenging, enjoyable, and enlightening, then I
believe you can come to appreciate both the power and the ultimate
simplicity of the theory.

I believe that there is no such thing as a passive understanding of
mathematics. It is only in actively lecturing, writing, or solving problems
that one can achieve a thorough grasp of mathematical ideas. This is the
reason that the book contains so many exercises and the reason that I
suggest that the serious reader do as many of them as he can. Some of my
colleagues have suggested that by including so many exercises I will deter
readers who want to read the book merely for the fun of it. To this I reply
that the exercises are offered, they are not assigned. Do with them what
you will, but you might in fact find that they can be fun too.

A famous prize for the proof of Fermat’s Last Theorem was established
by P. Wolfskehl in 1908. One of the conditions of the prize is that the
proof must appear in print, and the primary result of the offer of the prize
seems to have been a plague of nonsense proofs being submitted for
publication and being published privately. It was with obvious satisfaction
that Mordell and other number theorists announced that the post-World
War I inflation in Germany had reduced the originally munificient prize to
almost nothing. However, the economic recovery of Germany after World
War II has reversed this situation to some extent. The Wolfskehl prize is at
the present time worth about 10,000 DM or 4,000 American dollars. In
order to win the prize, a proof must be published and must be judged to be
correct, no sooner than two years after publication, by the Academy of
Sciences in Gottingen.

If you are inclined to try to win the prize, you have my best wishes. 1
would be truly delighted if the problem were solved, and especially so if
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the solver had found my book useful. Although it might be argued that a
book full of ideas that haven’t worked couldn’t possibly be of any use to
someone hoping to solve the problem, I think that the unsuccessful efforts
of so many first-rate mathematicians—not to mention many not-so-first-
rate ones—are enough to render a naive approach to the problem com-
pletely hopeless. The ideas in this book do solve the problem for all
exponents less than 37, which is more than can be said of any approach to
the problem which does not use Kummer’s theory of ideal factorization.
But before you set out to win the Wolfskehl prize there is one further fact
which you should take into account: there seems to me to be no reason at
all to assume that Fermat’s Last Theorem is true, but the prize does not
offer a single pfennig for a disproof of the theorem.

Note added in the fifth printing

The Annals of Mathematics for May, 1995, contains a proof of Fermat’s
last theorem by Andrew Wiles of Princeton University, which, in all probabil-
ity, will receive the Wolfskehl prize once the requisite two years have elapsed.
This great achievement, which has been celebrated by scholars and the general
public all over the world, will probably enhance rather than end interest in
the topic. Not surprisingly, Wiles’s proof uses very sophisticated modern
concepts that could not possibly have been used by Fermat. We now know
that Fermat'’s last theorem is true, but whether Fermat himself could prove
it is still unresolved. The quest for a proof that might have been accessible to
Fermat will surely continue.
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Fermat

1.1 Fermat and his “Last Theorem”

When Pierre de Fermat died in 1665 he was one of the most famous
mathematicians in Europe. Today Fermat’s name is almost synonymous
with number theory, but in his own time his work in number theory was so
revolutionary and so much ahead of its time that its value was poorly
understood and his fame rested much more on his contributions in other
fields. These included important work in analytic geometry—which he
invented independently of Descartes—in the theory of tangents, quadra-
ture, and maxima and minima—which were the beginning of calculus
—and in mathematical optics—which he enriched with the discovery that
the law of refraction can be derived from the principle of least time.

There are two surprising facts about Fermat’s fame as a mathematician.
The first is that he was not a mathematician at all, but a jurist. Throughout -
his mature life he held rather important judicial positions in Toulouse, and
his mathematical work was done as an avocation. The second is that he
never published a single* mathematical work. His reputation grew out of
his correspondence with other scholars and out of a number of treatises
which circulated in manuscript form. Fermat was frequently urged to
publish his work, but for unexplained reasons he refused to allow his
treatises to be published and many of his discoveries—particularly his
discoveries in number theory—were never put in publishable form.

This fact that Fermat refused to publish his work caused his many
admirers to fear that he would soon be forgotten if an effort weren’t made
to collect his letters and unpublished treatises and to publish them post-
humously. The task was undertaken by his son, Samuel. In addition to
*There is one slight exception. He did allow a minor work to be published in 1660 as an

appendix to a book written by a colleague. However, it is an exception which proves the rule:
it was published anonymously.
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soliciting letters and treatises from his father’s correspondents, Samuel de
Fermat went through his father’s own papers and books, and it was in this
way that Fermat’s famous “Last Theorem” came to be published.

Diophantus’ Arithmetic, one of the great classics of ancient Greek
mathematics which had been rediscovered and translated into Latin
shortly before Fermat's time, was the book which had originally inspired
Fermat’s study of the theory of numbers. Samuel found that his father had
made a number of notes in the margins of his copy of Bachet’s translation
of Diophantus, and as a first step in publishing his father’s works he
published a new edition of Bachet’s Diophantus [D3] which included
Fermat’s marginal notes as an appendix. The second of these 48 “Observa-
tions on Diophantus” was written in the margin next to Diophantus’
problem 8 in Book II which asks “given a number which is a square, write
it as a sum of two other squares.” Fermat’s note states, in Latin, that “On
the other hand, it is impossible for a cube to be written as a sum of two
cubes or a fourth power to be written as a sum of two fourth powers or, in
general, for-any number which is a power greater than the second to be
written as a sum of two like powers. 1 have a truly marvelous demonstra-
tion of this proposition which this margin is too narrow to contain.” This
simple statement, which can be written in symbols as “for any integer
n > 2 the equation x" + y” = 2" is impossible” is now known as Fermat’s
Last Theorem. If Fermat did indeed have a demonstration of it, it was truly
“marvelous,” because no one else has been able to find a demonstration of
it in the three hundred and more years since Fermat’s time. It is a problem
that many great mathematicians have tried unsuccessfully to solve,
although sufficient progress has been made to prove Fermat’s assertion for
all exponents n well up into the thousands. To this date it is unknown
whether the assertion is true or false.

The origin of the name “Fermat’s Last Theorem” is obscure. It is not
known at what time in his life Fermat wrote this marginal note, but it is
usually assumed that he wrote it during the period when he was first
studying Diophantus’ book, in the late 1630s, three decades before his
death, and in this case it surely was not his last theorem. Very possibly the
name stems from the fact that of the many unproved theorems that Fermat
stated, this is the last one which remains unproved. It is perhaps worth
considering that Fermat may have thought better of his *“marvelous
proof,” especially if he did write of it in the 1630s, because his other
theorems are stated and restated in letters and in challenge problems to
other mathematicians—and the special cases x3 + y3 # z3, x* + y*# 24 of
the Last Theorem are also stated elsewhere—whereas this theorem occurs
just once, as observation number 2 on Diophantus, a sphinx to mystify
posterity.

Since the Arithmetic of Diophantus deals exclusively with rational
numbers, it goes without saying that Fermat meant that there are no
rational numbers x, y, z such that x"+y"=2z" (n>2). If irrational
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