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Preface

As physicists, mathematicians or engineers, we are all involved with
mathematical calculations in our everyday work. Most of the laborious,
complicated, and time-consuming calculations have to be done over and
over again if we want to check the validity of our assumptions and
derive new phenomena from changing models. Even in the age of
computers, we often use paper and pencil to do our calculations.
However, computer programs like Mathematica have revolutionized our
working methods. Marhematica not only supports popular numerical
calculations but also enables us to do exact analytical calculations by
computer. Once we know the analytical representations of physical
phenomena, we are able to use Mathematica to create graphical
representations of these relations. Days of calculations by hand have
shrunk to minutes by using Marhematica. Results can be verified within
a few seconds, a task that took hours if not days in the past.

The present text uses Mathematica as a tool to discuss and to solve
examples from physics. The intention of this book is to demonstrate the
usefulness of Mathematica in everyday applications. We will not give a
complete description of its syntax but demonstrate by examples the use
of its language. In particular, we show how this modern tool is used to
solve classical problems.
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Preface

This second edition of Mathematica in Theoretical Physics seeks to
prevent the objectives and emphasis of the previous edition. It is
extended to include a full course in classical mechanics, new examples
in quantum mechanics, and measurement methods for fractals. In
addition, there is an extension of the fractal's chapter by a fractional
calculus. The additional material and examples enlarged the text so
much that we decided to divide the book in two volumes. The first
volume covers classical mechanics and nonlinear dynamics. The second
volume starts with electrodynamics, adds quantum mechanics and
general relativity, and ends with fractals. Because of the inclusion of
new materials, it was necessary to restructure the text. The main
differences are concerned with the chapter on nonlinear dynamics. This
chapter discusses mainly classical field theory and, thus, it was
appropriate to locate it in line with the classical mechanics chapter.

The text contains a large number of examples that are solvable using
Mathematica. The defined functions and packages are available on CD
accompanying each of the two volumes. The names of the files on the
CD carry the names of their respective chapters. Chapter 1 comments on
the basic properties of Mathematica using examples from different fields
of physics. Chapter 2 demonstrates the use of Mathematica in a
step-by-step procedure applied to mechanical problems. Chapter 2
contains a one-term lecture in mechanics. It starts with the basic
definitions, goes on with Newton's mechanics, discusses the Lagrange
and Hamilton representation of mechanics, and ends with the rigid body
motion. We show how Mathematica is used to simplify our work and to
support and derive solutions for specific problems. In Chapter 3, we
examine nonlinear phenomena of the Korteweg—de Vries equation. We
demonstrate that Mathematica is an appropriate tool to derive numerical
and analytical solutions even for nonlinear equations of motion. The
second volume starts with Chapter 4, discussing problems of
electrostatics and the motion of ions in an electromagnetic field. We
further introduce Mathematica functions that are closely related to the
theoretical considerations of the selected problems. In Chapter 5, we
discuss problems of quantum mechanics. We examine the dynamics of a
free particle by the example of the time-dependent Schridinger equation
and study one-dimensional eigenvalue problems using the analytic and
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numeric capabilities of Mathematica. Problems of general relativity are
discussed in Chapter 6. Most standard books on Einstein's theory discuss
the phenomena of general relativity by using approximations. With
Mathematica, general relativity effects like the shift of the perihelion
can be tracked with precision. Finally, the last chapter, Chapter 7, uses
computer algebra to represent fractals and gives an introduction to the
spatial renormalization theory. In addition, we present the basics of
fractional calculus approaching fractals from the analytic side. This
approach is supported by a package, FractionalCalculus, which is not
included in this project. The package is available by request from the
author. Exercises with which Mathematica can be used for modified
applications. Chapters 2-7 include at the end some exercises allowing
the reader to carry out his own experiments with the book.
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indebted to Hans Kélsch and Virginia Lipscy, Springer-Verlag New
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4

Electrodynamics

4.1 Introduction

This chapter is concerned with electric fields and charges encountered in
different systems. Electricity is an ancient phenomenon already known by
the Greeks. The experimental and theoretical basis of the current
understanding of electrodynamical phenomena was established by two
men: Michael Farady, the self-trained experimenter, and James Clerk
Maxwell, the theoretician. The work of both were based on extensive
material and knowledge by Coulomb. Farady, originally, a bookbinder,
was most interested in electricity. His inquisitiveness in gaining
knowledge on electrical phenomena made it possible to obtain an
assistantship in Davy's lab. Farady (see Figure 4.1.1) was one of the
greatest experimenters ever. In the course of his experiments, he
discovered that a suspended magnet would revolve around a current
bearing-wire. This observation led him to propose that magnetism is a
circular force. He invented the dynamo in 1821, with which a large
amount of our current electricity is generated. In 1831, he discovered
electromagnetic induction. One of his most important contributions to
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physics in 1845 was his development of the concept of a field to describe
magnetic and electric forces.

Figure 4.1.1. Michael Faraday: bom September 22, 1791; died August 25, 1867.

Maxwell (see Figure 4.1.2) started out by writing a paper entitled "On
Faraday's Lines of Force" (1856), in which he translated Faraday's theories
into mathematical form. This description of Faraday's findings by means of
mathematics presented the lines of force as imaginary tubes containing an
incompressible fluid. In 1861, he published the paper "On Physical Lines
of Force" in which he treated the lines of force as real entities. Finally, in
1865, he published a purely mathematical theory known as "On a
Dynamical Theory of the Electromagnetic Field". The equations derived
by Maxwell and published in "A Treaties on Electricity and Magnetism"
(1873) are still valid and a source of basic laws for engineering as well as
physics.
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Figure 4.1.2.  James Clerk Maxwell: born June 13, 1831: died November §, 1879.

The aim of this chapter is to introduce basic phenomena and basic solution
procedures for electric fields. The material discussed is a collection of
examples. It is far from being complete by considering the huge diversity
of electromagnetic phenomena. However, the examples discussed
demonstrate how symbolic computations can be used to derive solutions
for electromagnetic problems.

This chapter is organized as follows: Section 4.2 contains material on
point charges. The exampl discuss the electric field of an assembly of
discrete charges distributed in space. In Section 4.3, a standard boundary
problem from electrostatics is examined to solve Poisson's equation for an
angular segment. The dynamical interaction of electric fields and charged
particles in a Penning trap is discussed in Section 4.4.
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4.2 Potential and Electric Fields of Discrete
Charge Distributions

In electrostatic problems, we often need to determine the potential and the
electric fields for a certain charge distribution. The basic equation of
electrostatics is Gauss' law. From this fundamental relation connecting the
charge density with the electric field, the potential of the field can be
derived. We can state Gauss' law in differential form by

div E = 4np(7). 4.2.1)
If we introduce the potential ® by E = —grad ®, we can rewrite Eq. (4.2.1)
for a given charge distribution p in the form of a Poisson equation

AP = -4 4.22)

where p denotes the charge distribution. To obtain solutions of Eq.
(4.2..2), we can use the Green's function formalism to derive a particular
solution. The Green's function G(#, ¥) itself has to satisfy a Poisson
equation where the continuous charge density is replaced by Dirac's delta
function A, G (7, 7') = —4 n 6(7 — 7'). The potential ® is then given by

&) = [, GG, #)p(F ) d* r. (4.2.3)

In addition, we assume that the boundary condition G [y= 0 is satisfied on
the surface of volume V. If the space in which our charges are located is
infinitely extended, the Green's function is given by

= ]
G# r) = =Y (4.2.4)
The solution of the Poisson equation (4.2.3) becomes
o) = f £ 4. (4.2.5)

Our aim is to examine the potential and the electric fields of a discrete
charge distribution. The charges are characterized by a strength g; and are
located at certain positions #. The charge density of such a distribution is

given by
p(H) = T, q:6(7)). (4.2.6)



