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Introduction
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In scientific and engineering computation of today, the
practical problems to be solved are always complicated
and integrated. Due to the inherent complexity, the
corresponding problems can not be solved analytically,
and thus the more practical side of numerical methods is
shown for solving the complicated problems. The
general process for solving varied practical problems by
computer can be described as: @ Formulate the
mathematical model by abstracting and simplifying the
practical problem; @ Propose the numerical methods
for solving the model in terms of the features of the
mathematical model; () Make the corresponding
program by algorithmic language and mathematical
software; @ Debug the program on a computer,
present the result and numerically simulate the practical
problem by using computational result.

From the study objects and the teaching contents of
Numerical Analysis we know that this course involves
extensive ranges, including the mathematical problems
of Calculus, Matrix Algebra and Differential
Equations, and so it has high abstraction of pure
mathematics, Therefore, the first three sections of this
part briefly review the relative definitions, properties
and theorems of three courses, namely, Mathematical
Analysis, Advanced Algebra and Ordinary Differential
Equations. On the other hand, from the above process
we see that some kinds of errors may occur unavoidably
during the course of solving the practical problems and
that the reliably theoretical basis of these methods
should be proposed to ensure the reliability and
correctness of computational result, such as error
analysis, convergence analysis, stability analysis, and
so on. Hence, the fourth section of this part introduces
the relative contents on error analysis.

1.1 @R\ EI
1.1 Review of Calculus

REARBHTY BRI RE, &6 U8 HE 4
PH—TRMRIOHEXDREGTAR . mBFI
B RBAER AN ESEE. BRI
85y B ES U E— S0 ERERRE
HEAR.

Due to the contents mentioned in this book, this section
only introduces the relative knowledge of calculus of one
variable in Mathematical Analysis, such as the concepts
on limit of a sequence of numbers, limit of a function,
continuity of a function, derivative and its applications,
differential and integral, some necessary properties and
theorems, and so on.
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H R property

LM necessary condition

P L5 sufficient condition

AL ELRM  necessary and sufficient condition
WA if and only if

WA R limit of sequence of numbers
W R convergent sequence

M — 4 fE uniqueness theorem
BERtEEN boundedness theorem

R YO PR limit of function

BEE AR local boundedness

wWEEH Heine theorem
WEWHHER  Cauchy convergence criterion
EFMR infinitesimal

BHEX3T/ME  infinitesimal of higher order
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FiE rate of change
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BIRDER Fermat theorem

n i B8 n-th derivative

We differential

SHEE linear principal part

BIRER Rolle theorem

hrss B A E A Lagrange theorem

¥ B Cauchy theorem

e Taylor theorem

RBRN Taylor coefficient

FH LMK Taylor polynomial

R remainder

RS definite integral

[Pk 5 curvilinear trapezoid

g partition

REM Riemann sum

REHH Riemann integral

RoXE interval of integration

FRE primitive function

4 4-FEMBKAR  Newton-Leibniz formula

BadEE" mean value theorem of in-
tegrals

MNP —h{EEM  first mean value theorem

of integrals

Main Contents

1.1.1 Limit of Sequence of Numbers

Definition 1.1.1 Let {x,}3, be a given sequence of
real numbers and let a be a real constant. Then we can
say that the sequence {x,}5%1 converges to a or say that
{x,}2%1 has the limit a if, for any given ¢ > 0, there
exists a positive integer N(¢) such that | x, —a | < e,
whenever n > N(¢), and we denote the corresponding
notations as Eq, (1.1, 1)

(1.1.D

Theorem 1. 1.1 {Uniqueness) If the sequence {x,}%;
is convergent, then its limit must be unique.

Theorem 1. 1. 2 {Boundedness) If the sequence {x,}3%,
is convergent, then {z,}5%, must be bounded, that is to
say, there exists a positive constant M such that the
inequality | z, |<{ Mis valid for any positive integer n.
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ER1.1.5 BRARASFILHRRB.

EE L L6(HEEKAEN) I (z)7
BB EFVERGR SHEBLEN >0, F
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1.1.2 HRIBER

ENX 1.1L2 FHE¥K () TR 2 FREL
BBU(z: ) HEEXL, AR—IMEHE. &
MFEELEN e >0, FEER X<, &5
Lo<|lz—x <, H | f(o)—Al<e, W
FARBY f() R zo BB, HiCH

lim f(x) = A B f(z) > Alxz > 20).

Tzy

EELLT(E—) HFRY (@ ER x
HER, NEaRBLEE—K.
EE 1. 1.3 BHRYE) F grfnf(z) e

A, F”Jﬁ& o >0, ﬁ@’_!l O<| x—x | << & B,
Bl f@I<M, HFME-TEEEK.

R LLYBHBEFHE) & }igf(:) =
A, limg(z) =B, HA<B, M#ETEs >0, ##
3—“:0

ﬁ 0<| T Iy l<8o E‘r;ﬁ f(.I) <g(I).
EE LLIGBERER) HKEX lim f(2) =

ABRMNHASVDELFR-NEEHERYG
litg.l‘,. =xy B 2 # 2o (n = 1,2,-+) B‘Jﬁﬁﬂ

{z)om . H ,lrigf(x.) =A
EBEI1LLIIGBSYEE) HH58 (o,

g Mh(x) EH o WEZTLEBAHE
fla) <Ko <gx, B llmf(z)— limg(x) =

Tz,

A, W} limh(x) =

Ty

EE L L R2(EEarAR) KRB lim (D

Theorem 1.1.3 {Order-preserving) If the expressions
hm.t. = g and limy, = b are valid, moreover, a < b,

oo

then there exists a positive integer N such that z, < y,
asn > N.

Theorem 1. 1.4 (Squeeze Theorem} If the expressions
limz, = llm m Yy = aare valid and if there exists a posi-

neoo

tive integer N such that z, < z, <{ y, asn > N, then

limz, = a.
—co’

Theorem 1.1.5 If a sequence of numbers is monotonic
and bounded, then it must have a limit.

Theorem 1. 1.6 (Caunchy Convergence Criterion) A se-
quence of numbers {x.}3%1 is convergent if and only if
for any given ¢ > 0, there exists a positive integer N
such that | z, — z,, |<<eas n,m>N.

1.1.2 Limit of Function

Definition 1,1.2 Assume that the function f(x) is de-
fined in a certain deleted neighborhood of x¢, written as
U°(x4;8’), and that A is a real constant. If there exists
a positive number §(<C &’) such that | f(z) —A | < efor
any ¢ > 0 and for any z satisfying the inequality 0 < | =
— xo | <C &, then the constant A is called the limit of the
function f(x) at the point a5, and the corresponding no-
tations are denoted by Eq. (1. 1. 2).

1.1.2

Theorem 1. 1.7 (Uniqueness) If the function f(x) has
a limit at the point xp, then the limit must be unique,

Theorem 1.1.8 {Local Boundedness) If lim f(z)=A,

)
then there exists §,°>0 such that the inequality | f(x)| <
M is valid whenever 0 <<| x — zo | << &, where M is a
positive constant,

Theorem 1.1.9 {Local Order-preserving) It the
expressions lim f(x) = A and lim g(x) = B are valid,

roxo 1":0
moreover, A << B, then there exists §s > 0 such that
Flx) < glx) as0 < | z— 0 | << &.

Theorem 1. 1. 10 {Heine Theorem) The limit expres-
sion lim f(x) = Ais valid if and only if lim f(x,) = A

Eanat 7

(]

is valid for any sequence of numbers {.x,}:; satisfying
the conditions limx, = xo and z, # 2o (n=1,2,...) .

o

Theorem 1. 1.11 {Squeeze Theorem) If the functions
f(x), g(x) and h(x) satisfy the inequality f(z) <
h(x) < g(z) in a certain deleted neighborhood of x, and
if lim f(x) = lim g(x) = A, then limh(z) =

Tz, T=>zq T4

Theorem 1. 1, 12 {Cauchy Convergence Criterion) The



HEMRAVELEGR MEELEN >0, FF
Eo>0, HAHBERER0<| 2" —z |< 8
Mo<| ' — =z <MWz Mz, B/ | f()—
f@) |<e.

EX1.1.3 F limf(x) =0, MK () &

Mz — z BRI /N,

EBX1.1.4 & flx) Mglx) BY z > xo
FIEIEN MR, () % lim L%i‘; =0, W# f(x)
%F g RBHET AR, BH £ =

o(g(x)) (z = z0) 3G % lim 522 — c = 0,mi
) g(.'l-')

(o) Mgl RAREFNR.EH f(o)=

Og(2)) (x> 1) 3 GiD) £ lim LE2 = 1, Mk
Tz, g(I)

(D Meglx) BREMEFAE IEH A ~
g(z)(z = x,).

1.1.3 HYHELEHE
EX1LLS 4 flo) BENEZHSEX +
FE®HE = € X. %}_i.r:lf(Z) = flx), MK

FDER z BE:HEN (D EEXH XK
R E— S ERELE, MK (o) 7 X LS.

EELLIBEREEE) & f(o) €6
X [a,b6] L#ESE . METE [a.0] EER,BIFEE
M>o0, X#‘H:EB‘J € [a,b], ﬁ ‘ f(:c) ‘éM

EELLMEBEKEE) & () #EAK
Ella,o] LS, MEEa,b] L—E0 LIBRE R
KEMB/ME, PFE &y € [a,b], 18X —H]
z € La,b], B f(® < f(2) < f(p.

EEILLIS(AEEERE) B (o) £H
Rl [a.6] EES, LEAT () 5 f(&) ZIH
Bk—E MEE—K € (a.b), 8 f(& =
L.

EEL1L16 i f(z) AWRXE [a,6] L&
&, m M BBE f(2 7 [a.6] LRB/MERM
BAEN f) —FBTLUBEBATF mMIMZH
B — Y1,

EH1LL17 (BAEE) ®| f(o AKX
[ [a,6] LS, H f(a) - f(B) <0, MEDF
E—AEC (a,b), 518 f(& = 0.

limit lim f(x) exists if and only if, for any givene >0,

l"":o
there exists & > 0 such that the inequality | f(z’) —
F(x) 1< eis valid for 2" and 2” satisfying the inequali-
ties 0<<| 2’ —zo | < Sand 0< | 2" —zo | < 8, respective-

1y.
Definition 1.1.3 1f lim f{(z) = 0, then we say that

Tz,

f(x) is an_infinitesimal as x - xo.

Definition 1.1.4 Assume that f(x) and g(x) are
infinitesimals as z - zo. (i) If lim £ = ¢, then
Eaz™ g(.‘c)
f(x) is said to be the higher order infinitesimal of
g(x), denoted by f(x) = o{g(x)) (x — o) ; (i) If
. flx) L.
11_1’12 e # 0, then f(x) is said to be the same
order infinitesimal of g(z), denoted by f(z) =
. fx)

O(g(x)) (x— o) ; Cil) I lim A 1, then f(x)
H‘o

is said to be the equivalent infinitesimal of g(x), deno-

ted by f(z) ~ g(x) (x> x) .

1,1.3 Continuity of Function

Definition 1. 1.5 Let f(x) be & function defined on the
set of real numbers X, and -, € X. Then f(x) is
continuous at the point xo if lim f(z) = f(x). The

R aaat Y
0
function f(x) is continuous on the set X if it is continu-~
ous at each point in X,

Theorem 1. 1. 13 (Boundedness Theorem) Assume that
JS{x) is continuous on the closed interval [a,4], then it
is bounded on [a,5], namely, there exists M > 0 such
that | f(x) |<< M for any x € [a,b].

Theorem 1. 1. 14 {Extreme Value Theorem) Assume
that f(x) is continuous on the closed interval [a,5],
then it must have a maximum and a minimum on [a,&],
namely, there exists §,9 € [a,b] such that f(&) <
(o < FGp for all = € [a,b].

Theorem 1. 1, 15 (Intermediate Value Theorem) As-
sume that f(x) is continucus on the closed interval
[a,b] and that L is a value between f(a) and £(&).
Then there exists a point & where § € (a,4), such that
F(& = L.

Theorem 1.1.16 Assume that f(z) is continuous on

. the closed interval [a,#] and that » and M are the mini-

mum and the maximum of f(x} on [a,5], respectively.
Then f{x) can take all the values between m and M.

Theorem 1. 1. 17 (Zero Point Theorem) Assume that
F(x) is continuous on the closed interval [,6] and that
f(a) = f(b) < 0, then there exists a value £ € (a,b)
such that f(& = 0.



1.1.4 SEEHNA

EX1.1.6 & f(z) EAE z HREAN
A AR lim L2 e g
B G B o TR B RALH D B (2
A o WRHGEN S RIG2] H

=1z,

BhrHBRESHRIENENELR

1.1.4 Derivative and its Applications

Definition 1. 1.6 Assume that f(z) is defined on a
certain neighborhood containing x,. Then f(x) is said

to be differentiable at xo if lim flx) = flxo) exists,
11y r—Xo
moreover, the limit is called the derivative of f(x) at
df(.z:)

Zo » denoted by f'(xo) or === . An equivalent

l‘lo
way to express the derivatwe using the A- increment no-
tation is given by Eq. (1. 1. 3).

(Io f'(:l: ).

lim f(Io -+ h’)l

x4

B, E () EXE I HE—LEHT
S MHRAERE I ATTR.

EHE1.1.18 #F f(2)  z, T, W f(2
T:E-Zo i-féﬁ

EX1.LT & y= f(),Ay = f(2) —
flx)idz=z—z. BH (D HE KB A S
HEB st W B Ax X RN Ay = Adz +
olAz) KPP AR Ax TXBH B WK f(2) 15
z, [ 8 . BK AAx 2R f () 7E 20 KIS iEh dy =
AAz B dy = Adz. ‘

EEILLY f(ODE THHESLE

FHR f(0) & o FESH.
EHELL2W(®REGER) B (D HEL T

‘?‘Frﬂ& Zo m%%i&ﬁ,mu f,(xo) = 0,
BELL2I(FREE) #® f(o ZHK

B [a,6] EEZE . EFREKE (a,6) AT F, A
f(a) = fCb), MFE (a.b) AEDHEE—S e, &
/rr@=o.

ERLL2Q2GRBAERE) # f(o) &
X E e8] LEL.EEFEE (2,00 W F. 1
% (a,0) RESHFEE—K & 18

f®

EEILL2I(GREEE) & f(» M g
W REa,b] LELE, EF KE(a,b) W F,
BXEEMN z € (a,b),g' () # 0, MFE(a.0 B
ELHFE—KE B

(1.1.3

Furthermore, if the function f(z) is differentiable at
each point in the interval I, then it is said to be differen-
tiable on I.

Theorem 1. 1.18 If f(x) is differentiable at x,, then
f(x) is continuous at xp.

Definition 1.1.7 Lety = f(x), Ay = f(x) — f(xo)
and Ax = x—x4. If the relation between the increment
Ay of f(x) at zo and the increment Ax of the invariable =
is given by Ay = AAx 4+ 0(Ax), where A is a constant
which is independent of Ax, then f(x) is said to be dif-
ferentiable at 2o and AAx is the differential of f(x) at
xo, denoted by dy = AAxr ordy = Adx.

Theorem 1.1,19  f(x) is differentiable at x5 if and only
if f(x) exists a derivative at x.

Theorem 1. 1.20 (Fermat Theorem) Assume  that
f(x) is differentiable at ro and takes the local extreme
value at z, then f(xy) = 0.

Theorem 1. 1.21 (Rolle Theorem) Assume that f(x)
is continuous on the closed interval [a,b] and is differ-
entiable in the open interval (a,4) and satisfies f(a) =
S&). Then there exists at least a number £ in (a,b)
such that £(& = 0.

Theorem 1. 1.22 (Lagrange Theorem) Assume that
f(x) is continuous on the closed interval [a,5] and is
differentiable in the open interval (a,#). Then there
exists at least a number ¢in (a,4) such that Eq. (1. 1. 4)
is valid.

- __f__f(b;:a(“’, (1.1.4)

Theorem 1. 1.23 {Canchy Theorem) Assume  that
f(x) and g(zx) are continuous on the closed interval
[a,b] and are differentiable in the open interval (a,6),
moreover, g'(x) 7 0 for any = € (a,b). Then there
exists at least a number £in (a,4) such that Eq. (1. 1. 5)
is valid.
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2(6) — gla)’
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EBELL24(EHER) & (2 7E[a,0]
LAEnHEESBBEEG,O REr+1HR
¥ REEH © € (o8], UM FEEH
z € [a,8]), BE—NNTF x fl z ZBH (),
H

f(z) = P,(z) + R, (x),

A

(1.1.5)

Theorem 1. 1. 24 (Taylor Theorem) Assume that f(x)
has n-th order continuous derivative on [a,8], and has
n—+1 -th order derivative on (a,6). Let x, be a constant
on [a,b], then for any = € [a,b], there exists £&(z)
between xo and x such that Eq. (1. 1. 6) is valid,

(1.1.6)

where P,(x) and R,(x) are given by Egs. (1. 1. 7) and
(1. 1. 8), respectively.

P, (z) = f(Io)+fl(130)(1_110)+%fﬂ(Io)(I—Io)z+"‘+;17f(')(10)(1’—1‘o)"9 (1.1.7

Ru(z) = —2e £ (2(2)) (2 — 20 )™,

(n+ 1)1

XB P.(o) KR f() E x B9 n T EBHEIMA,
R.(o) BAM BT P.(2) BRI HBRARW. &
Bn—>oo, Ml P.(x) BEMEFTREHFN
() o WEMRBGER 2 = 0, WEHZL
TXERRAZELTREZIR, MR REK
A E AT A

EBX1.1.8 Fz BREZUFIRE f(x) =0
BRI f(z*) =0 ZFHEEEBH m, F7
fx) =(z—z*)"g(x), Hglz")#0, MK ="
RAB (D=0 mE R Ym=18..K
BHEE:E f(o) B WO KK, N =" B
) =0 mBROUFESLEREGE

flz*) = fi(z") == f"D(2") =0,f™(z") #0,

1.1.5 ERSH

EXLLY & f2) REXE [a6] LW
AREBYE @0 HEBTEA2—1 MR o5
L R Y ] ‘f’FﬁET—#ﬁ'ﬂj P. a =z <
o KKz, =6, FEME & € Lrersxz] I8
FEME [z, ] WREN Az = 2~ 200, 4

A = max{Az}, FRR li‘t{.l_Zf(Gs)A:c; -5

BRERSGR PEX, X 5K & WBREXX,
WM f(2) # [a,0] LRETH AKX S, =

S Az BARERM, RBIE I HRY f(2)

i=1

(1.1.8)

Here P,(x) is called the Taylor polynomial of degree n
of f(x) at xp, and R,{z) is called the remainder of La-
grange type associated with P,(x). The infinite series
obtained by taking the limit of P,(x) as n— oo is called
the Taylor series of f(x) at zo. In the case of x, = 0,
the Taylor polynomial is often called a Maclaurin poly-
nomial, and the Taylor series is called a Maclaurin se-
ries.

Definition 1.1.8 If =* is a root of the nonlinear equa-
tion f(x) = 0, then f(x" ) = 0. If there exists a posi-
tive integer m such that f(z) = (x — z* )™g(x) and
g{(x*) # 0, then x* is called a root of order m of the e-
quation f(x) = 0; if m = 1, then z* is a simple root;
if f(x) is am times differentiable function, thenx* is a
root of order m of f(x) = 0if and only if the conditions
in Eq, (1. 1. 9) are valid.

(1.1.9)

1.1.5 Definite Integral

Definition 1.1.9 Assume that f(x) is a bounded func-
tion defined on [a,8). The partition P; a = z, <
x1 & ** <z, = b is obtained by inserting n — 1 points
XysXys... s Xe arbitrarily in (a,b) and & is an arbitrary
point on [ i1 ,z;]. The length of the subinterval [z~ »
x;] is denoted by Ax; = z; — x;—;, If the limit

lim > £(&) Az exists, where A = max {Ax:}, and if
10 =] 1Cicn

the limit value is independent of both the partition P and
the point &, then f(z) is called Riemann integrable on

[a,6]. The sum S, = Ef(Ei)Az; is called the Rie-
i=1
mann sum and the limit Iis called the definite integral of

5
f(x) on[a,b], written as [ = I f(x)dz, wherea and b



e [a,b] EMBBU JEX [ = [ f(odz, XE

a b ABERIERSHTRA LR,

EE1.1.25 (RohERE) & () &
PﬁIXIFJ [a!b] _tﬁg ,ﬁl'JE [a’b] J:ﬁﬁi-—ﬁ &
]

be(x)dz — f&) (b—a).

ERLL2G(RSE—FEEERE) & (0
Mglx) £MXE [(a,6] EELE, H gla) &
[arb] J:Z:E% » I E [a,bj _tﬁ&"“;ﬁ & Eﬁ

j ) g G =

TELL2EE-(BEEAR) £ f(@
EHXE[a,6] %L, B F(2) £ f(2) MEX
%0, 0

J-bf(z)dx = F(b) — F(a).

are called the lower limit and the upper limit, respec-

tively.

Theorem 1. 1, 25 {Mean Valae Theorem of Integrals)
Suppose that f(z) is continuous on the closed interval
[a,b], then there exists a point ¢ on [a,b] such that
Eq. (1. 1. 10) is valid.

(L.1. 10

Theorem 1. 1, 26 {First Mean Value Theorem of Inte-
grals) Suppose that f(x) and g(x) are continuous on
the closed interval [a,#] and that g(x) does not change
sign on [a,5]. Then there exists a point £on [a,b] such
that Eq. (1. 1. 11) is valid.

)
r@| sa. (1.1 1D

Theorem 1, 1,27 {Newton-Leibniz Formula) If f(x) is
continuous on the closed interval [a2,8] and if F(z) is a
primitive function of f(z), then Eq. (1. 1. 12) is valid.

(1.1.12)

1.2 4EFE 12K B AR
1.2 Review of Matrix Algebra

FHEEFBNE_RLIAETABENE
BEREMEADNR, ANEEHBIMEERES
B.EESTHREE REANRERER. &

FhRERIERS  EREM M EER , §%.
xR

5y vector

SR component

g¥EEx linear dependence

KX linear independence

5 matrix

TR element

=8 operation

Jilik-3 sum

Bk scalar product

58 FE R B2 matrix multiplication

®E transpose

FoE conjugate transpose

In this section, we review the basic elements of Matrix
Algebra which is used in the second part of this book,
such as the fundamental operations of matrices (vec-
tors), the determinant, inverse, trace, eigenvalue and
eigenvector of matrices, several special matrices, the
theory of matrix norms, and so on.

Key Words
kHR nonsingular
AR singular
WA R inverse matrix
TR determinant
b1 trace
po g feif diagonal matrix
=X AEk tridiagonal matrix
E=MEE upper triangular matrix
FEFHFEKBERE  upper Hessenberg matrix
Xt FR 56 PE symmetric matrix
IR KRR Hermite matrix
EXEE orthogonal matrix



PR RE unitary matrix
SEREEIERE symmetric positive definite matrix
V% B¥IERE elementary permutation matrix
X, characteristic polynomial
FEIEH eigenvalue
WM R eigenvector
FRIE X eigenpair
HEUERE similar matrices
REEHK algebraic multiplicity
JLAa E# geometric multiplicity
T B RE defective matrix
EHFRYEEER  Jordan canonical form
HRYH Jordan block
S RIRMERY Schur canonical form
WRA Rayleigh quotient
FHRE A Gershgorin disk
EREH Gershgorin theorem
E inner product
FERNTE
1.2.1 @EmEBMEE
BN L2.1 BAHTFERAN 2 MR H
7|
x = (x19Xz "
I—At ks B BKAIxHIE SFBN

EBHRBHEALHE. B IERWHENEH
B. n X RECER . BEEEAREICHEC.

X1°°

ay s

EM1.2.2 4 SENKP LMEESH,
wx, €S, MRARBEERILIFTHHY
sas € P, {E48

arxy +

BUFR x50, RERX. FRFSHKA.2.2) R
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HHE
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= g, = *=*

x%.
EX1.2.3 HEEBTHEHERN mX 2P
£l

an
A= (a.’j )an =

Am}

+ a.x.,

BER scalar product

ER norm

HH-JE /REASER Cauchy-Schwarz inequality
ZARER triangular inequality
EEHE positive definiteness
FwtE homogeneity

HEE consistency

] B f 3 vector norm

- p-norm

ELHE continuity

£ Lidcd equivalence

F-#% F-norm

Br ?ﬁﬁ operator norm

F K induced norm
MR subordinate norm

ﬁ ﬁ & ITOW norm

LIIE R 4 column norm
WK spectral norm

Main Contents

1.2.1 Vector and Matrix

Definition 1.2.1 An array of n scalars of the form
(1.2.1) is called a vector x of dimension n.

11.)T

(L.2.D

The scalar x; is called the component of x, The vectors
with real and complex components are called real and
complex vectors, respectively. The set of real vectors is
written as R” and the set of complex vectors is written
as C”.

Definition 1.2.2 Let Sbe a linear space over a number

field P, and x14... +xs € S. If there existais. .. ran €
P which are not all zeros, such that Eq. (1. 2. 2) holds,

=40, (1.2.2)
then xy,... ,x, are called linearly dependent. Other-
wise, if Eq. (1. 2. 2) holds only if a) = a7 = =+ = a,
0, then x1,... ,X, are linearly independent.

Definition 1.2.3 An array of m X n scalars of the form
(1. 2. 3) is called an m X n matrix.

[ H Q1
az Agn

(1.2.3
Amz Am



B—PmXnBEE. B a; BRAHAMNTE :; Wa: K
HAVTNATE. R m=n MWK AR B
B TR N ERNERERILER, FAT
RAIEBHERERIEIERE. m X n TEKFET
£ R™" ,m X n ZLIEREHEICHE C.

EX1.2.4 TELIFBHNEERIZE
W’E‘ﬂzo.

EX1.2.5 MATXHIEKTESLAIEN
EREER N AE R, IRfE L

EX1.2.6 (EEMN@DRAEN)
(1) EREfE & 8k

The scalar a;; is called an element of A and the scalar a;
is called a diagonal element of A. A is called a square
matrix of order n if m = n. The matrices with real and
complex elements are called real and complex matrices,
respectively, The set of all X 2 real matrices is written
asR™*#_ The set of all m X n complex matrices is written

as Cmxn,

Definition 1. 2.4 A matrix whose elements are all ze-
ros is called a zero matrix, written as 0,

Definition 1.2.5 A matrix whose diagonals are all 1
and the other elements are zeros is called an identity
matrix, written as I,

Definition 1. 2. 6 (Operations of Matrices and Vectors)

(1) Additions of matrix and vector

C= A+B,C.',' = a; +b|',-; = x+y,z.- = I,‘""y.'.

(2> 56 B0 151 B 6 250

(2) Scalar products of matrix and vector

C—"'—-aA,q,' =y 2= aky Z; = ax;.

(3) EEEFEE

C= AB, Cy =

B A= (a),B= (5;),C= (c;)x= (1),
y=(y),z= ().

EBX1.2.7 A=(a;) EmXniERK. A
BER.CEAT, REBRANGFIREBANE
B, ERnXmEKEAT=(a;)) . ANLEEE,
e A7, B AY = (@),

EBX1.2.8 FEafrBEATHHIESR
) MBRGFE— T n M TEEB E§ AB = BA =
L BRiff A #93,i0/E A,

EX1.2.9 nBr B A BTHR, B4
det(A), EXL R

det(A) = Ea;,—A.,- 3
i=1

Kq’ A-j yﬂa-’j E‘Jﬁﬁ%?ﬁ
BX1.2.10 nBrikeA B, IiCE 1),
BXH A = Sa,.
i=1

R 1.2.1

(3> Multiplication of matrices

n
E ag,bp,-.
k=1

where A = (a;), B = (b;)y C = (c5)y x = (z:),
y=C(yi)r 2= (z).

Definition 1. 2.7 Let A = (a;) be an m X n matrix.
The transpose of A, denoted by AT, is obtained by
exchanging the rows and the columns of 4, i. e. , it is
the n )X m matrix AT = (a;). The conjugate transpose of
A, denoted by AH, is defined as A" = (aj).

Definition 1. 2.8 A square matrix A of order n is called
invertible (or nonsingular), if there exists a square
matrix B of order n such that AB = BA = J, Bis called
the inverse of A, written as A™1.

Definition 1. 2,9 The determinant of a square matrix A
of order n, denoted by det(A) , is defined by the formula
(1.2.4),

j=1,2,,m, (1.2.4)

where A;; is the algebraic complementary determinant of
a;.

Definition 1, 2,10 The trace of a square matrix A of

order n, denoted by tr(A), is defined as tr(4) = Ea;.

i=1

Property 1.2.1

(1) (AB)T = BTAT, A € R™,B € R™,



1.2.2 B%HERE
HA= (a;) € R™=,
(D) sk

(2) =xmmEkE
(3) L=fasEm
(&) LW
(5) MFRIERE

(6) BRIRKFRAEE
(7) XTERIEEBERE
(8) IEXM K

9) BEEK

(2) (AB)' =B'A™, A,B € R™";

(3) det(AB) = det(A)det(B), A,B € R>";
(4) det(AT) = det(A), A € R™;

(5) det(cA) = c"det(A), ¢ € R,A € R™,

1.2.2 Special Matrices
LetA = (a,-,-) € R™=,

(1) Diagonal matrix
a; =0, i 7 j;
I (2) Tridiagonal matrix
ay =0, |i—j|>1;
|  (3) Upper triangular matrix
a; =0,i>j;
| (4) Upper Hessenberg matrix
a; =0, i>j5+1;
| (5) Symmetric matrix
AT = A;
| (6) Hermite matrix
Al = A;
[ (7) Symmetric positive definite matrix
AT = A, x"TAx >0, Vx#0;
l (8) Orthogonal matrix
A7 = AT,
| (9) Unitary matrix

A7l = AF,

EE1.2.1 ZA=(a;) € R™, TR Theorem 1.2.1 LetA = (a;) € R™*, The following

propositions are equivalent .

SR .
(D HEMbe R, BT BEH A = b =) (1) The linear system Ax = b has a unique solution for
I}E—ﬁ ; any b € R™;
Q) FRIFBHAA=0HFE—Bx=0; (2) The homogenous system Ax = 0 has a unique solu-
tionx = 0;

(3) det(A) = 0;
(4) A7 1

(3) det(A) % 0;
(4) A7 exists;

(5) AR n, Bl rank(A) = ». (5) The rank of A is #, namely, rank(4) = n.




