KETENBBRIELHMES @&

Programming in ANSI C

Fifth Edition

S

3 e 4

E Balagurusamy #

‘ ATERZFH R

£ HBMET (BER)

Programming in ANSI C

Fifth Edition

e C BT

(%8 5 fRD

E Balagurusamy

B XFHMRA
I =

E Balagurusamy
Programming in ANSI C, Fifth Edition
EISBN: 0-07-068182-1

Copyright © 2011 by The McGraw-Hill Companies, Inc.

Original language published by The McGraw-Hill Companies, Inc. All Rights reserved. No part
of this publication may be reproduced or distributed by any means, or stored in a database or
retrieval system, without the prior written permission of the publisher.

Authorized English language edition jointly published by McGraw-Hill Education (Asia) Co.
and Tsinghua University Press. This edition is authorized for sale only to the educational and
training institutions, and within the territory of the People’s Republic of China (excluding Hong
Kong, Macao SAR and Taiwan). Unauthorized export of this edition is a violation of the
Copyright Act. Violation of this Law is subject to Civil and Criminal Penalties.

A AR SR ENRR BN 2 [RRAL 0 3 B A8 55 - B/ OB tH AR () 2 &1 B/ LHAR. AR
ANWAETENRIA R AR S EEE. BB R E G X e 2
BRIV Z . R HO, WHEREFEEE, B2 flE.
REHREBSE I, ABUMLA ARG B A BT,

R EEEREFREEYS BF: 01-2011-4034

AR EIEE McGraw-Hill 2 8B {GE, TIRZETENE.
HERLFRE, B%T. EAEEHEERIE: 010-62782989 13701121933
BB LG E (CIP) 81iE

FiHE C B4t =Programming in ANSI C, Fifth Edition: 25 5 iiz: 3530/ (E1) EdrhBEiE
K (Balagurusamy, E.) 3. --EVA. - dbsi: W% HE,. 2011.10
(KRZEHBHHEERSIEZEMRTD

ISBN 978-7-302-26419-4

[OfF- 1. OF- [OCES -—HBFEH—FSSs -0 —% V. OTP312

tHEMRAEE CIP i F (2011) 161355

ifEdniE: R

HwIEENE: EHH

HAR&IT: BHERFEHRM M b dERERANFFHRE A K
http:/ /www.tup.com.cn B 4R: 100084
i+ B #: 010-62770175 1 T): 010-62786544

BESEERS: 010-62795954, jsjjc@tup.tsinghua.edu.cn
B B & t%: 010-62772015, zhiliang@tup.tsinghua.edu.cn
s ST AT
: EEFEPE
: 148X210 EM3k: 17.5
011 F 10 HE 1 El R: 2011 F 10 AHEE 1 IKEDKI
1~3000
29.00 T

i

F SR H D
S5 55 B i

i3
En
i1
Jo

7+ 042470-01

iR B

HEA 21 tihg, HAEZENOZE. BRURSEEANESHE
IMEE . FFH PO TLERI AT IS B EXBEEROAAL,
WHBAERSFTIEMRE. A%HE, EAEFEERAL KNI,
PAZHEEEN. B RERSHENEM EFKIE, A T it
MIEFRE, BOE AR EE & BCR H E NS R EH

HERZEHRBGAEM 1996 £T710, SESNEL HRAFEE, ¥
ENHAR T “RFHEHEBFTAR UK S—R¥3|3RHE, 2
FIE AR ORI, BA 21 g, RINEEAREASET
HB RS HAIE, ECHMEM L, 5P KEEAR, %
BB ERRS, —mMEEEiE A X RPLE A T RE S SRR
RATENBE K E S E S EM B E 28, HRAE < KET L
HE EIELBEMRY] GLENR)”, LIBEEE . WIHImEE Rk
FRARI B RNE LR BABN]. BEHEERNEE. HIEH
R A BATHEFEESMTENEE WIEFE, URRIIE « XETEHL
HEEIELEMET GLER)” BEFEHR, BEASERITAENE
=,

K% W At

Contents

1 Overview of C i 1

1.1 Historyof C I
1.2 Importance of C 3
1.3 Sample Program 1: Printing a Message 3
1.4 Sample Program 2: Adding Two Numbers 6
1.5 Sample Program 3: Interest Calculation 8
1.6 Sample Program 4: Use of Subroutines 10
1.7 Sample Program 5: Use of Math Functions 11
1.8 Basic Structure of C Programs 12
1.9 Programming Style 14
1.10 Executing a ‘C’ Program 14
1.11 Unix System 16
1.12 Ms-Dos System 18

Review Questions 19

Programming Exercises 20

2 Constants, Variables, and Data Types 23

2.1 Introduction 23
2.2 Character Set 23
2.3 C Tokens 25
2.4 Keywords and Identifiers 25
2.5 Constants 26
2.6 Variables 30
2.7 Data Types 31
2.8 Declaration of Variables 34
2.9 Declaration of Storage Class 37
2.10 Assigning Values to Variables 38
2.11 Defining Symbolic Constants 44
2.12 Declaring a Variable as Constant 45
2.13 Declaring a Variable as Volatile 45

iv } Contents

2.14 Overflow and Underflow of Data 46

Review Questions 49
Programming Exercises 51

3 Operators and Expressions 52

3.1 Introduction 52

3.2 Arithmetic Operators 52

3.3 Relational Operators 55

3.4 Logical Operators 57

3.5 Assignment Operators 57

3.6 Increment and Decrement Operators 59
3.7 Conditional Operator 61

3.8 Bitwise Operators 61

3.9 Special Operators 61

3.10 Arithmetic Expressions 63

3.11 Evaluation of Expressions 64

3.12 Precedence of Arithmetic Operators 65
3.13 Some Computational Problems 67

3.14 Type Conversions in Expressions 68
3.15 Operator Precedence and Associativity 72
3.16 Mathematical Functions 74

Review Questions 78
Programming Exercises 81

4 Managing Input and Output Operations 84

4.1 Introduction 84

4.2 Reading a Character 85
4.3 Writing a Character 88
44 Formatted Input 89

4.5 Formatted Output 98

Review Questions 110
Programming Exercises 112

5 Decision Making and Branching 114

5.1 Introduction 114

5.2 Decision Making with IF Statement 114
5.3 Simple IF Statement 115

5.4 The IF....ELSE Statement 119

5.5 Nesting of IF... ELSE Statements 122
5.6 The ELSE IF Ladder 126

5.7 The Switch Statement 129

5.8 The ?: Operator 133

5.9 The GOTO Statement 136

Review Questions 144
Programming Exercises 148

Contents

6 Decision Making and Looping

6.1 Introduction 152
6.2 The WHILE Statement 154
6.3 The DO Statement 157
6.4 The FOR Statement 159
6.5 Jumpsin LOOPS 166
6.6 Concise Test Expressions 174
Review Questions 182
Programming Exercises 186
7 Arrays
7.1 Introduction 190
7.2 One-dimensional Arrays 192
7.3 Declaration of One-dimensional Arrays 193
7.4 Initialization of One-dimensional Arrays 195
7.5 Two-dimensicnal Arrays 199
7.6 Initializing Two-dimensional Arrays 204
7.7 Multi-dimensional Arrays 208
7.8 Dynamic Arrays 209
7.9 More about Arrays 209

9

Review Questions 223
Programming Exercises 225

Character Arrays and Strings

8.1
8.2
8.3
84
8.5
8.6
8.7
8.8
8.9

Introduction 229

Declaring and Initializing String Variables 230

Reading Strings from Terminal 231
Writing Strings to Screen 236

Arithmetic Operations on Characters 241

Putting Strings Together 242
Comparison of Two Strings 244
String-handling Functions 244
Table of Strings 250

8.10 Other Features of Strings 252

Review Questions 257
Programming Exercises 259

User-defined Functions

9.1
9.2
9.3
9.4
9.5
9.6
9.7
9.8

Introduction 262
Need for User-defined Functions 262
A Multi-function Program 263

Elements of User-defined Functions 266

Definition of Functions 267
Return Values and their Types 269
Function Calls 270

Function Declaration 272

152

190

229

262

vi } Contents

9.9 Category of Functions 274

9.10 No Arguments and no Return Values 274
9.11 Arguments but no Return Values 277

9.12 Arguments with Return Values 280

9.13 No Arguments but Returns a Value 284
9.14 Functions that Return Multiple Values 285
9.15 Nesting of Functions 286

9.16 Recursion 288

9.17 Passing Arrays to Functions 289

9.18 Passing Strings to Functions 294

9.19 The Scope, Visibility and Lifetime of Variables 295
9.20 Multifile Programs 305

Review Questions 311
Programming Exercises 315

10 Structures and Unions 317

10.1 Introduction 317

10.2 Defining a Structure 317

10.3 Declaring Structure Variables 319

10.4 Accessing Structure Members 321

10.5 Structure Initialization 322

10.6 Copying and Comparing Structure Variables 324
10.7 Operations on Individual Members 326
10.8 Arrays of Structures 327

10.9 Arrays within Structures 329

10.10 Structures within Structures 331

10.11 Structures and Functions 333

10.12 Unions 335

10.13 Size of Structures 337

10.14 Bit Fields 337

Review Questions 344
Programming Exercises 348

11 Pointers 351

11.1 Introduction 351

11.2 Understanding Pointers 351

11.3 Accessing the Address of a Variable 354
11.4 Declaring Pointer Variables 355

11.5 Initialization of Pointer Variables 356
11.6 Accessing a Variable through its Pointer 358
11.7 Chain of Pointers 360

11.8 DPointer Expressions 361

11.9 Pointer Increments and Scale Factor 362
11.10 Pointers and Arrays 364

11.11 DPointers and Character Strings 367
11.12 Array of Pointers 369

Contents { vii

11.13 Pointers as Function Arguments 370
11.14 Functions Returning Pointers 373
11.15 Pointers to Functions 373

11.16 Pointers and Structures 376

11.17 Troubles with Pointers 379

Review Questions 385
Programming Exercises 388

12 File Management in C 389

12.1 Introduction 389

12.2 Defining and Opening a File 390

12.3 Closing a File 391

12.4 Input/Output Operations on Files 392

12.5 Error Handling During I/0 Operations 398
126 Random Access to Files 400

12,7 Command Line Arguments 405

Review Questions 408
Programming Exercises 409

13 Dynamic Memory Allocation and Linked Lists 411

13.1 Introduction 417

13.2 Dynamic Memory Allocation 411

13.3 Allocating a Block of Memory: MALLOC 413
13.4 Allocating Multiple Blocks of Memory: CALLOC 415
13.5 Releasing the Used Space: Free 415

13.6 Altering the Size of a Block: REALLOC 416
13.7 Concepts of Linked Lists 417

13.8 Advantages of Linked Lists 420

13.9 Types of Linked Lists 421

13.10 Pointers Revisited 422

13.11 Creating a Linked List 424

13.12 Inserting an Item 428

13.13 Deleting an Item 431

13.14 Application of Linked Lists 433

Review Questions 440
Programming Exercises 442

14 The Preprocessor 444

14.1 Introduction 444

14.2 Macro Substitution 445

14.3 File Inclusion 449

14.4 Compiler Control Directives 450
14.5 ANSI Additions 453

Review Questions 456
Programming Exercises 457

viii |

Contents

15 Developing a C Program: Some Guidelines

15.1
15.2
15.3
154
15.5
15.6

Introduction 458

Program Design 458

Program Coding 460)
Common Programming Errors 462
Program Testing and Debugging 469
Program Efficiency 471

Review Questions 472

Appendix I: Bit-level Programming 474

Appendix II: ASCII Values of Characters 480
Appendix III: ANSI C Library Functions 482

Appendix IV: Projects 486
Appendix V: C99 Features 537

Bibliography

Index

458

545
547

Overview of C

[1.1] HISTORY OF C

‘C’ seems a strange name for a programming language. But this strange sounding language
is one of the most popular computer languages today because it is a structured, high-level,
machine independent language. It allows software developers to develop programs without
worrying about the hardware platforms where they will be implemented.

The root of all modern languages is ALGOL, introduced in the early 1960s. ALGOL was
the first computer language to use a block structure. Although it never became popular in
USA, it was widely used in Europe. ALGOL gave the concept of structured programming to
the computer science community. Computer scientists like Corrado Bohm, Guiseppe Jacopini
and Edsger Dijkstra popularized this concept during 1960s. Subsequently, several languages
were announced.

In 1967, Martin Richards developed a language called BCPL (Basic Combined Program-
ming Language) primarily for writing system software. In 1970, Ken Thompson created a
language using many features of BCPL and called it simply B. B was used to create early
versions of UNIX operating system at Bell Laboratories. Both BCPL and B were “typeless”
system programming languages.

C was evolved from ALGOL, BCPL and B by Dennis Ritchie at the Bell Laboratories in
1972. C uses many concepts from these languages and added the concept of data types and
other powerful features. Since it was developed along with the UNIX operating system, it is
strongly associated with UNIX. This operating system, which was also developed at Bell
Laboratories, was coded almost entirely in C. UNIX is one of the most popular network
operating systems in use today and the heart of the Internet data superhighway.

For many years, C was used mainly in academic environments, but eventually with the
release of many C compilers for commercial use and the increasing popularity of UNIX, it
began to gain widespread support among computer professionals, Today, C is running under
a variety of operating system and hardware platforms.

During 1970s, C had evolved into what is now known as “traditional C”. The language
became more popular after publication of the book ‘The C Programming Language’ by Brian
Kerningham and Dennis Ritchie in 1978. The book was so popular that the language came to
be known as “K&R C” among the programming community. The rapid growth of C led to the
development of different versions of the language that were similar but often incompatible.
This posed a serious problem for system developers.

2 E Programming in ANSI C

To assure that the C language remains standard, in 1983, American National Standards
Institute (ANSI) appointed a technical committee to define a standard for C. The committee
approved a version of C in December 1989 which is now known as ANSI C. It was then
approved by the International Standards Organization (ISO) in 1990. This version of C is
also referred to as C89.

During 1990's, C++, a language entirely based on C, underwent a number of
improvements and changes and became an ANSI/ISO approved language in November 1977.
C++ added several new features to C to make it not only a true object-oriented language but
also a more versatile language. During the same period, Sun Microsystems of USA created a
new language Java modelled on C and C++.

All popular computer languages are dynamic in nature. They continue to improve their
power and scope by incorporating new features and C is no exception. Although C++ and
Java were evolved out of C, the standardization committee of C felt that a few features of
C++/Java, if added to C, would enhance the usefulness of the language. The result was the
1999 standard for C. This version is usually referred to as C99. The history and development
of C is illustrated in Fig. 1.1.

1960 ALGOL International Group
1967 BCE Martin Richards
X
1970 B Ken Thompson
1972 Traditional C Dennis Ritchie
1978 K&R C Kernighan and Ritchie
1989 ANSIE ANSI Committee
1990 ANSIISOC 1SO Committee
1999 [j@ Standardization Committee

Fig. 1.1 History of ANSI C

Overview of C % 3

Although C99 is an improved version, still many commonly available compilers do not
support all of the new features incorporated in C99. We, therefore, discuss all the new
features added by C99 in an appendix separately so that the readers who are interested can
quickly refer to the new material and use them wherever possible.

[1.2] IMPORTANCE OF C

The increasing popularity of C is probably due to its many desirable qualities. It is a robust
language whose rich set of built-in functions and operators can be used to write any complex
program. The C compiler combines the capabilities of an assembly language with the features
of a high-level language and therefore it is well suited for writing both system software and
business packages. In fact, many of the C compilers available in the market are written in C.

Programs written in C are efficient and fast. This is due to its variety of data types and
powerful operators. It is many times faster than BASIC. For example, a program to
increment a variable from 0 to 15000 takes about one second in C while it takes more than 50
seconds in an interpreter BASIC.

There are only 32 keywords in ANSI C and its strength lies in its built-in functions. Sev-
eral standard functions are available which can be used for developing programs.

C is highly portable. This means that C programs written for one computer can be run on
another with little or no modification. Portability is important if we plan to use a new
computer with a different operating system.

C language is well suited for structured programming, thus requiring the user to think of
a problem in terms of function modules or blocks. A proper collection of these modules would
make a complete program. This modular structure makes program debugging, testing and
maintenance easier.

Another important feature of C is its ability to extend itself. A C program is basically a
collection of functions that are supported by the C library. We can continuously add our own
functions to C library. With the availability of a large number of functions, the programming
task becomes simple.

Before discussing specific features of C, we shall look at some sample C programs, and
analyze and understand how they work.

@ SAMPLE PROGRAM I: PRINTING A MESSAGE

Consider a very simple program given in Fig. 1.2.

main(}

{

Y A — printing begins....... */
printf("l see, I remember");

Y A f— printing ends....oe. */

Fig. 1.2 A program to print one line of text

4 ll Programming in ANSI C

This program when executed will produce the following output:
I see, I remember

Let us have a close look at the program. The first line informs the system that the name of
the program is main and the execution begins at this line. The main() is a special function
used by the C system to tell the computer where the program starts. Every program must
have exactly one main function. If we use more than one main function, the compiler cannot
understand which one marks the beginning of the program.

The empty pair of parentheses immediately following main indicates that the function
main has no arguments (or parameters). The concept of arguments will be discussed in
detail later when we discuss functions (in Chapter 9).

The opening brace “{ ” in the second line marks the beginning of the function main and
the closing brace “}” in the last line indicates the end of the function. In this case, the closing
brace also marks the end of the program. All the statements between these two braces form
the function body. The function body contains a set of instructions to perform the given task.

In this case, the function body contains three statements out of which only the printf line
is an executable statement. The lines beginning with /* and ending with */ are known as
comment lines. These are used in a program to enhance its readability and understanding.
Comment lines are not executable statements and therefore anything between /* and * is
ignored by the compiler. In general, a comment can be inserted wherever blank spaces can
occur—at the beginning, middle or end of a line—*“but never in the middle of a word ”.

Although comments can appear anywhere, they cannot be nested in C. That means, we
cannot have comments inside comments. Once the compiler finds an opening token, it
ignores everything until it finds a closing token. The comment line

[fem=aft====¥ ===

is not valid and therefore results in an error.

Since comments do not affect the execution speed and the size of a compiled program, we
should use them liberally in our programs. They help the programmers and other users in
understanding the various functions and operations of a program and serve as an aid to
debugging and testing. We shall see the use of comment lines more in the examples that
follow.

Let us now look at the printf() function, the only executable statement of the program.

printf("I see, I remember");
printf is a predefined standard C function for printing output. Predefined means that it is a
function that has already been written and compiled, and linked together with our program
at the time of linking. The concepts of compilation and linking are explained later in this
chapter. The printf function causes everything between the starting and the ending
quotation marks to be printed out. In this case, the output will be:
I see, I remember

Note that the print line ends with a semicolon. Every statement in C should end with a
semicolon (;) mark.
Suppose we want to print the above quotatien in two lines as

1 see,

I remember!

This can be achieved by adding another printf function as shown below:

Overview of C Is

printf("I see, \n");
printf("I remember !");

The information contained between the parentheses is called the argument of the func-
tion. This argument of the first printf function is “ I see, \n” and the second is “I remember !”.
These arguments are simply strings of characters to be printed out.

Notice that the argument of the first printf contains a combination of two characters \
and n at the end of the string. This combination is collectively called the newline character.
A newline character instructs the computer to go to the next (new) line. It is similar in
concept to the carriage return key on a typewriter. After printing the character comma (,).
the presence of the newline character \n causes the string “I remember !” to be printed on
the next line. No space is allowed between \ and n.

If we omit the newline character from the first printf statement, then the output will
again be a single line as shown below.

1 see, 1 remember |

This is similar to the output of the program in Fig. 1.2. However, note that there is no
space between , and 1.

1t is also possible to produce two or more lines of output by one printf statement with the
use of newline character at appropriate places. For example, the statement

printf("I see,\n I remember !");

will output
1 see,

I remember !
while the statement

printf("I\n.. see,\n. .. . I\n. remember !");
will print out
1
.. see,
- . .. remember !

NOTE: Some authors recommend the inclusion of the statement
#include <stdio.h>

at the beginning of all programs that use any input/output library functions. However, this
is not necessary for the functions printf and seanf which have been defined as a part of the
C language. See Chapter 4 for more on input and output functions.

Before we proceed to discuss further examples, we must note one important point. C does
make a distinction between uppercase and lowercase letters. For example, printf and
PRINTF are not the same. In C, everything is written in lowercase letters. However,
uppercase letters are used for symbolic names representing constants. We may also use
uppercase letters in output strings like “I SEE” and “I REMEMBER”

The above example that printed I see, I remember is one of the simplest programs.
Figure 1.3 highlights the general format of such simple programs. All C programs need a
main function.

| Programming in ANS1 C

Function name
Start of program

Program statements

End of program

Fig. 1.3 Format of simple C programs

The main Function

The main is a part of every C program. C permits different forms of main state ment.
Following forms are allowed.

e main()

e int main()

e void main()

e main{void)

e void main(void)
« int main({void)

The empty pair of parentheses indicates that the function has no arguments. This
may be explicitly indicated by using the keyword void inside the parentheses. We
may also specify the keyword int or void before the word main. The keyword void
means that the function does not return any information to the operating system and
int means that the function returns an integer value to the operating system. When
int is specified, the last statement in the program must be “return 0". For the sake of
simplicity, we use the first form in our programs.

SAMPLE PROGRAM 2: ADDING TWO NUMBERS

Consider another program, which performs addition on two numbers and displays the re-
sult. The complete program is shown in Fig. 1.4.

/* Programm ADDITION line-1 */
/* Written by EBG line-2 */
| main() /* line-3 */ '

/* Vine-4 */

Overview of C] 7

i
int number; /* line-5 */
float amount; /* line-6 */

/* Tline-7 */
number = 100; /* Tline-8 */

/* line-9 */
amount = 30.75 + 75.35; /* line-10 */
printf("%d\n",number) ; /* Tline-11 */
printf("%5.2f",amount); /* line-12 */

} /* line-13 */

Fig. 1.4 Program to add two numbers

This program when executed will produce the following output:
100
106.10

The first two lines of the program are comment lines. It is a good practice to use comment
lines in the beginning to give information such as name of the program, author, date, etc.
Comment characters are also used in other lines to indicate line numbers.

The words number and amount are variable names that are used to store numeric data.
The numeric data may be either in integer form or in real form. In C, all variables should be
declared to tell the compiler what the variable names are and what #ype of data they hold.
The variables must be declared before they are used. In lines 5 and 6, the declarations

int number;

float amount; .
tell the compiler that number is an integer (int) and amount is a floating (float) point
number. Declaration statements must appear at the beginning of the functions as shown in
Fig.1.4. All declaration statements end with a semicolon; C supports many other data types
and they are discussed in detail in Chapter 2.

The words such as int and float are called the keywords and cannot be used as variable
names. A list of keywords is given in Chapter 2.

Data is stored in a variable by assigning a data value to it. This is done in lines 8 and 10.
In line-8, an integer value 100 is assigned to the integer variable number and in line-10, the
result of addition of two real numbers 30.75 and 75.35 is assigned to the floating point
variable amount. The statements

number
amount

100;
30.75 + 75.35; ,
are called the assignment statements. Every assignment statement must have a semicolon
at the end.

The next statement is an output statement that prints the value of number. The print
statement

printf("%d\n", number);
contains two arguments. The first argument “%d” tells the compiler that the value of the
second argument number should be printed as a decimal integer. Note that these arguments
are separated by a comma. The newline character \n causes the next output to appear on a
new line.

