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Overview of C

[1.1] HISTORY OF C

‘C’ seems a strange name for a programming language. But this strange sounding language
is one of the most popular computer languages today because it is a structured, high-level,
machine independent language. It allows software developers to develop programs without
worrying about the hardware platforms where they will be implemented.

The root of all modern languages is ALGOL, introduced in the early 1960s. ALGOL was
the first computer language to use a block structure. Although it never became popular in
USA, it was widely used in Europe. ALGOL gave the concept of structured programming to
the computer science community. Computer scientists like Corrado Bohm, Guiseppe Jacopini
and Edsger Dijkstra popularized this concept during 1960s. Subsequently, several languages
were announced.

In 1967, Martin Richards developed a language called BCPL (Basic Combined Program-
ming Language) primarily for writing system software. In 1970, Ken Thompson created a
language using many features of BCPL and called it simply B. B was used to create early
versions of UNIX operating system at Bell Laboratories. Both BCPL and B were “typeless”
system programming languages.

C was evolved from ALGOL, BCPL and B by Dennis Ritchie at the Bell Laboratories in
1972. C uses many concepts from these languages and added the concept of data types and
other powerful features. Since it was developed along with the UNIX operating system, it is
strongly associated with UNIX. This operating system, which was also developed at Bell
Laboratories, was coded almost entirely in C. UNIX is one of the most popular network
operating systems in use today and the heart of the Internet data superhighway.

For many years, C was used mainly in academic environments, but eventually with the
release of many C compilers for commercial use and the increasing popularity of UNIX, it
began to gain widespread support among computer professionals, Today, C is running under
a variety of operating system and hardware platforms.

During 1970s, C had evolved into what is now known as “traditional C”. The language
became more popular after publication of the book ‘The C Programming Language’ by Brian
Kerningham and Dennis Ritchie in 1978. The book was so popular that the language came to
be known as “K&R C” among the programming community. The rapid growth of C led to the
development of different versions of the language that were similar but often incompatible.
This posed a serious problem for system developers.
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To assure that the C language remains standard, in 1983, American National Standards
Institute (ANSI) appointed a technical committee to define a standard for C. The committee
approved a version of C in December 1989 which is now known as ANSI C. It was then
approved by the International Standards Organization (ISO) in 1990. This version of C is
also referred to as C89.

During 1990's, C++, a language entirely based on C, underwent a number of
improvements and changes and became an ANSI/ISO approved language in November 1977.
C++ added several new features to C to make it not only a true object-oriented language but
also a more versatile language. During the same period, Sun Microsystems of USA created a
new language Java modelled on C and C++.

All popular computer languages are dynamic in nature. They continue to improve their
power and scope by incorporating new features and C is no exception. Although C++ and
Java were evolved out of C, the standardization committee of C felt that a few features of
C++/Java, if added to C, would enhance the usefulness of the language. The result was the
1999 standard for C. This version is usually referred to as C99. The history and development
of C is illustrated in Fig. 1.1.

1960 ALGOL International Group
1967 BCE Martin Richards
X
1970 B Ken Thompson
1972 Traditional C Dennis Ritchie
1978 K&R C Kernighan and Ritchie
1989 ANSIE ANSI Committee
1990 ANSIISOC 1SO Committee
1999 [j@ Standardization Committee

Fig. 1.1 History of ANSI C
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Although C99 is an improved version, still many commonly available compilers do not
support all of the new features incorporated in C99. We, therefore, discuss all the new
features added by C99 in an appendix separately so that the readers who are interested can
quickly refer to the new material and use them wherever possible.

[1.2] IMPORTANCE OF C

The increasing popularity of C is probably due to its many desirable qualities. It is a robust
language whose rich set of built-in functions and operators can be used to write any complex
program. The C compiler combines the capabilities of an assembly language with the features
of a high-level language and therefore it is well suited for writing both system software and
business packages. In fact, many of the C compilers available in the market are written in C.

Programs written in C are efficient and fast. This is due to its variety of data types and
powerful operators. It is many times faster than BASIC. For example, a program to
increment a variable from 0 to 15000 takes about one second in C while it takes more than 50
seconds in an interpreter BASIC.

There are only 32 keywords in ANSI C and its strength lies in its built-in functions. Sev-
eral standard functions are available which can be used for developing programs.

C is highly portable. This means that C programs written for one computer can be run on
another with little or no modification. Portability is important if we plan to use a new
computer with a different operating system.

C language is well suited for structured programming, thus requiring the user to think of
a problem in terms of function modules or blocks. A proper collection of these modules would
make a complete program. This modular structure makes program debugging, testing and
maintenance easier.

Another important feature of C is its ability to extend itself. A C program is basically a
collection of functions that are supported by the C library. We can continuously add our own
functions to C library. With the availability of a large number of functions, the programming
task becomes simple.

Before discussing specific features of C, we shall look at some sample C programs, and
analyze and understand how they work.

@ SAMPLE PROGRAM I: PRINTING A MESSAGE

Consider a very simple program given in Fig. 1.2.

main( }

{

Y A — printing begins....... */
printf("l see, I remember");

Y A f— printing ends....oe. */

Fig. 1.2 A program to print one line of text



4 ll Programming in ANSI C

This program when executed will produce the following output:
I see, I remember

Let us have a close look at the program. The first line informs the system that the name of
the program is main and the execution begins at this line. The main( ) is a special function
used by the C system to tell the computer where the program starts. Every program must
have exactly one main function. If we use more than one main function, the compiler cannot
understand which one marks the beginning of the program.

The empty pair of parentheses immediately following main indicates that the function
main has no arguments (or parameters). The concept of arguments will be discussed in
detail later when we discuss functions (in Chapter 9).

The opening brace “{ ” in the second line marks the beginning of the function main and
the closing brace “}” in the last line indicates the end of the function. In this case, the closing
brace also marks the end of the program. All the statements between these two braces form
the function body. The function body contains a set of instructions to perform the given task.

In this case, the function body contains three statements out of which only the printf line
is an executable statement. The lines beginning with /* and ending with */ are known as
comment lines. These are used in a program to enhance its readability and understanding.
Comment lines are not executable statements and therefore anything between /* and * is
ignored by the compiler. In general, a comment can be inserted wherever blank spaces can
occur—at the beginning, middle or end of a line—*“but never in the middle of a word ”.

Although comments can appear anywhere, they cannot be nested in C. That means, we
cannot have comments inside comments. Once the compiler finds an opening token, it
ignores everything until it finds a closing token. The comment line

[fem=aft====¥ ===

is not valid and therefore results in an error.

Since comments do not affect the execution speed and the size of a compiled program, we
should use them liberally in our programs. They help the programmers and other users in
understanding the various functions and operations of a program and serve as an aid to
debugging and testing. We shall see the use of comment lines more in the examples that
follow.

Let us now look at the printf( ) function, the only executable statement of the program.

printf("I see, I remember");
printf is a predefined standard C function for printing output. Predefined means that it is a
function that has already been written and compiled, and linked together with our program
at the time of linking. The concepts of compilation and linking are explained later in this
chapter. The printf function causes everything between the starting and the ending
quotation marks to be printed out. In this case, the output will be:
I see, I remember

Note that the print line ends with a semicolon. Every statement in C should end with a
semicolon (;) mark.
Suppose we want to print the above quotatien in two lines as

1 see,

I remember!

This can be achieved by adding another printf function as shown below:
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printf("I see, \n");
printf("I remember !");

The information contained between the parentheses is called the argument of the func-
tion. This argument of the first printf function is “ I see, \n” and the second is “I remember !”.
These arguments are simply strings of characters to be printed out.

Notice that the argument of the first printf contains a combination of two characters \
and n at the end of the string. This combination is collectively called the newline character.
A newline character instructs the computer to go to the next (new) line. It is similar in
concept to the carriage return key on a typewriter. After printing the character comma (,).
the presence of the newline character \n causes the string “I remember !” to be printed on
the next line. No space is allowed between \ and n.

If we omit the newline character from the first printf statement, then the output will
again be a single line as shown below.

1 see, 1 remember |

This is similar to the output of the program in Fig. 1.2. However, note that there is no
space between , and 1.

1t is also possible to produce two or more lines of output by one printf statement with the
use of newline character at appropriate places. For example, the statement

printf("I see,\n I remember !");

will output
1 see,

I remember !
while the statement

printf( "I\n.. see,\n. .. . I\n. .. .. remember !");
will print out
1
.. see,
- . .. remember !

NOTE: Some authors recommend the inclusion of the statement
#include <stdio.h>

at the beginning of all programs that use any input/output library functions. However, this
is not necessary for the functions printf and seanf which have been defined as a part of the
C language. See Chapter 4 for more on input and output functions.

Before we proceed to discuss further examples, we must note one important point. C does
make a distinction between uppercase and lowercase letters. For example, printf and
PRINTF are not the same. In C, everything is written in lowercase letters. However,
uppercase letters are used for symbolic names representing constants. We may also use
uppercase letters in output strings like “I SEE” and “I REMEMBER”

The above example that printed I see, I remember is one of the simplest programs.
Figure 1.3 highlights the general format of such simple programs. All C programs need a
main function.
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Function name
Start of program

Program statements

End of program

Fig. 1.3 Format of simple C programs

The main Function

The main is a part of every C program. C permits different forms of main state ment.
Following forms are allowed.

e main()

e int main()

e void main()

e main{void)

e void main(void)
« int main({void)

The empty pair of parentheses indicates that the function has no arguments. This
may be explicitly indicated by using the keyword void inside the parentheses. We
may also specify the keyword int or void before the word main. The keyword void
means that the function does not return any information to the operating system and
int means that the function returns an integer value to the operating system. When
int is specified, the last statement in the program must be “return 0". For the sake of
simplicity, we use the first form in our programs.

SAMPLE PROGRAM 2: ADDING TWO NUMBERS

Consider another program, which performs addition on two numbers and displays the re-
sult. The complete program is shown in Fig. 1.4.

/* Programm ADDITION line-1 */
/* Written by EBG line-2 */
| main() /* line-3 */ '

/* Vine-4 */



Overview of C ] 7

i
int number; /* line-5 */
float amount; /* line-6 */

/* Tline-7 */
number = 100; /* Tline-8 */

/* line-9 */
amount = 30.75 + 75.35; /* line-10 */
printf("%d\n",number) ; /* Tline-11 */
printf("%5.2f",amount); /* line-12 */

} /* line-13 */

Fig. 1.4 Program to add two numbers

This program when executed will produce the following output:
100
106.10

The first two lines of the program are comment lines. It is a good practice to use comment
lines in the beginning to give information such as name of the program, author, date, etc.
Comment characters are also used in other lines to indicate line numbers.

The words number and amount are variable names that are used to store numeric data.
The numeric data may be either in integer form or in real form. In C, all variables should be
declared to tell the compiler what the variable names are and what #ype of data they hold.
The variables must be declared before they are used. In lines 5 and 6, the declarations

int number;

float amount; .
tell the compiler that number is an integer (int) and amount is a floating (float) point
number. Declaration statements must appear at the beginning of the functions as shown in
Fig.1.4. All declaration statements end with a semicolon; C supports many other data types
and they are discussed in detail in Chapter 2.

The words such as int and float are called the keywords and cannot be used as variable
names. A list of keywords is given in Chapter 2.

Data is stored in a variable by assigning a data value to it. This is done in lines 8 and 10.
In line-8, an integer value 100 is assigned to the integer variable number and in line-10, the
result of addition of two real numbers 30.75 and 75.35 is assigned to the floating point
variable amount. The statements

number
amount

100;
30.75 + 75.35; ,
are called the assignment statements. Every assignment statement must have a semicolon
at the end.

The next statement is an output statement that prints the value of number. The print
statement

printf("%d\n", number);
contains two arguments. The first argument “%d” tells the compiler that the value of the
second argument number should be printed as a decimal integer. Note that these arguments
are separated by a comma. The newline character \n causes the next output to appear on a
new line.



