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Introduction

The idea of representing a complex mathematical object by a simpler
one is as old as mathematics itself. It is particularly useful in classification
problems. For instance, a single linear transformation on a finite dimen-
sional vector space is very adequately characterised by its reduction to its
rational or its Jordan canonical form. It is now generally accepted that the
representation theory of associative algebras traces its origin to Hamilton’s
description of the complex numbers by pairs of real numbers. During the
1930s, E. Noether gave to the theory its modern setting by interpreting rep-
resentations as modules. That allowed the arsenal of techniques developed
for the study of semisimple algebras as well as the language and machinery
of homological algebra and category theory to be applied to representation
theory. Using these, the theory grew rapidly over the past thirty years.

Nowadays, studying the representations of an algebra (which we always
assume to be finite dimensional over an algebraically closed field, associa-
tive, and with an identity) is understood as involving the classification of
the (finitely generated) indecomposable modules over that algebra and the
homomorphisms between them. The rapid growth of the theory and the
extent of the published original literature became major obstacles for the
beginners seeking to make their way into this area.

We are writing this textbook with these considerations in mind: It is
therefore primarily addressed to graduate students starting research in the
representation theory of algebras. It should also, we hope, be of interest to
mathematicians working in other fields.

At the origin of the present developments of the theory is the almost
simultaneous introduction and use on the one hand of quiver-theoretical
techniques by P. Gabriel and his school and, on the other hand, of the theory
of almost split sequences by M. Auslander, I. Reiten, and their students.
An essential role in the theory is also played by integral quadratic forms.
Our approach in this book consists in developing these theories on an equal
footing, using their interplay to obtain our main results. Qur strong belief
is that this combination is best at yielding both concrete illustrations of the
concepts and the theorems and an easier computation of actual examples.
‘We have thus taken particular care in introducing in the text as many as
possible of the latter and have included a large number of workable exercises.

vii



viii INTRODUCTION

With these purposes in mind, we divide our material into two parts.

The first volume serves as a general introduction to some of the tech-
niques most commonly used in representation theory. We start by showing
in Chapters II and III how one can represent an algebra by a bound quiver
and a module by a linear representation of the bound quiver. We then turn
in Chapter IV to the Auslander-Reiten theory of almost split sequences,
giving various characterisations of these, showing their existence in module
categories, and introducing one of our main working tools, the so-called
Auslander-Reiten quiver. As a first and easy application of these concepts,
we show in Chapter V how one can obtain a complete description of the
representation theory of the Nakayama (or generalised uniserial) algebras.
We return to theory in Chapter VI, giving an outline of tilting theory,
another of our main working tools. A first application of tilting theory
is the classification in Chapter VII of those hereditary algebras that are
representation-finite (that is, admit only finitely many isomorphism classes
of indecomposable modules) by means of the Dynkin diagrams, a result
now known as Gabriel’s theorem. We then study in Chapter VIII a class
of algebras whose representation theory is as “close” as possible to that of
hereditary algebras, the class of tilted algebras introduced by D. Happel
and C. M. Ringel. Besides the general properties of tilted algebras, we give
a very handy criterion, due to S. Liu and A. Skowroniski, allowing verifica-
tion of whether a given algebra is tilted or not. The last chapter in this
volume deals with indecomposable modules not lying on an oriented cycle
of nonzero nonisomorphisms between indecomposable modules.

Throughout this volume, we essentially use integral quadratic form tech-
niques. We present them here in the spirit of Ringel [144].

The first volume ends with an appendix collecting, for the convenience
of the reader, the notations and terminology on categories, functors, and
homology and recalling some of the basic facts from category theory and
homological algebra needed in the book. In Chapter I, we introduce the
notation and terminology we use on algebras and modules, and we briefly
recall some of the basic facts from module theory. We introduce the notions
of the radical of an algebra and of a module; the notions of semisimple
module, projective cover, injective envelope, the socle, and the top of a
module, local algebra, primitive idempotent. We also collect basic facts
from the module theory of finite dimensional K-algebras.

The reader interested mainly in linear representations of quivers and
path algebras or familiar with elementary facts on rings and modules can
skip Chapter I.

It is our experience that the contents of the first volume of this book
can be covered during one (eight-month) course.
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The main aim of the second volume, “Representation—Infinite Tilted
Algebras! is to study some interesting, classes of representation-infinite al-
gebras A and, in particular, to give a fairly complete description of the
representation theory of representation-infinite tilted algebras. If the alge-
bra A is tame hereditary, that is, if the underlying graph of its quiver is
a Euclidean diagram, we show explicitly how to compute the regular inde-
composable modules over A, and then over any tame concealed algebra.

It was not possible to be encyclopedic in this work. Therefore many
important topics from the theory have been left out. Among the most
notable omissions are covering techniques, the use of derived categories and
partially ordered sets. Some other aspects of the theory presented here are
discussed in the books [21], [31], [76], [98], [84], [151], and especially [144].

Throughout this book, the symbols N, Z, Q, R, and C mean the sets of
natural numbers, integers, rational, real, and complex numbers, and M, (K)
means the set of all square n x n matrices over K. The cardinality of a set
X is denoted by |X].

‘We take pleasure in thanking all our colleagues and students who helped
us with their comments and suggestions. We wish particularly to express our
appreciation to Sheila Brenner, Otto Kerner, and Kunio Yamagata for their
helpful discussions and suggestions. Particular thanks are due to Frangois
Huard and Jessica Lévesque, and to Mrs. Jolanta Szelatyriska for her help
in preparing a print-ready copy of the manuscript.
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Chapter I

Algebras and modules

We introduce here the notations and terminology we use on algebras and
modules, and we briefly recall some of the basic facts from module theory.
Examples of algebras, modules, and functors are presented. We introduce
the notions of the (Jacobson) radical of an algebra and of a module; the
notions of semisimple module, projective cover, injective envelope, the socle
and the top of a module, local algebra, and primitive idempotent. We also
collect basic facts from the module theory of finite dimensional K-algebras.
In this chapter we present complete proofs of most of the results, except
for a few classical theorems. In these cases the reader is referred to the
following textbooks on this subject [2], [6], [49], [61], [131], and [165].

Throughout, we freely use the basic notation and facts on categories and
functors introduced in the Appendix.

The reader interested mainly in linear representations of quivers and
path algebras or familiar with, elementary facts on rings and modules can
skip this chapter and begin with Chapter II.

For the sake of simplicity of presentation, we always suppose that K is
an algebraically closed field and that an algebra means a finite dimensional
K-algebra, unless otherwise specified.

I.1 Algebras

By a ring, we mean a triple (A, +, -) consisting of a set A, two binary

operations: addition + : A x A — A, (a,b) — a + b; multiplication
: AxA—> A, (a,b) — ab, such that (A4, +) is an abelian group, with

zero element 0 € A, and the following conditions are satisfied:

(i) (ab)e = a(be),

(i) a(b+c) =ab+acand (b+ c)a=ba+ca
for all a,b,c € A. In other words, the multiplication is associative and both
left and right distributive over the addition. A ring A is commutative if
ab = ba for all a,b € A.

‘We only consider rings such that there is an element 1 € A where 1 # 0
and la = al = a for all a € A. Such an element is unique with respect to
this property; we call it the identity of the ring A. In this case the ring
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is a quadruple (A, +, -, 1). Throughout, we identify the ring (4, +, -, 1)
with its underlying set A.

A ring K is a skew fleld (or division ring) if every nonzero element a
in K is invertible, that is, there exists b € K such that ab= 1 and ba = 1.
A skew field K is said to be a field if K is commutative.

A field K is algebraically closed if any nonconstant polynomial A(t)
in one indeterminate ¢ with coefficients in K has a root in K.

If A and B are rings, amap f : A — B is called a ring homomorphism
if f(a +b) = f(a) + f(b) and f(adb) = f(a)f(b) for all a,b € A. If, in
addition, A and B are rings with identity elements we assume that the ring
homomorphism f preserves the identities, that is, that f(1) = 1.

Let K be a field. A K-algebra is a ring A with an identity element
(denoted by 1) such that A has a K-vector space structure compatible with
the multiplication of the ring, that is, such that

A(ab) = (aA)b = a(Ab) = (ab)A

for all A € K and all a,b € A. A K-algebra A is said to be finite dimen-
sional if the dimension dimx A of the K-vector space A is finite.

A K-vector subspace B of a K-algebra A is a K-subalgebra of A if
the identity of A belongs to B and bb’ € B for all b,b’ € B. A K-vector
subspace I of a K-algebra A is a right ideal of A (or left ideal of A) if
za € I (or az € I, respectively) for all z € I and a € A. A two-sided ideal
of A (or simply an ideal of A) is a K-vector subspace I of A that is both a
left ideal and a right ideal of A.

It is easy to see that if I is a two-sided ideal of a K-algebra A, then the
quotient K-vector space A/I has a unique K-algebra structure such that
the canonical surjective linear map 7 : A — A/I, a — @ = a + I, becomes
a K-algebra homomorphism.

If I is a two-sided ideal of A and m > 1 is an integer, we denote by
I™ the two-sided ideal of A generated by all elements z123... %y, where
T1,T2,...,Tm € I, that is, I™ consists of all finite sums of elements of the
form z,Z3...%m, where z1,%2,...,Zm € I. We set I® = A. The ideal I is
said to be nilpotent if ™ = 0 for some m > 1.

If A and B are K-algebras, then a ring homomorphism f : A — B
is called a K-algebra homomorphism if f is a K-linear map. Two K-
algebras A and B are called isomorphic if there is a K-algebra isomorphism
f : A — B, that is, a bijective K-algebra homomorphism. In this case we
write A & B,

Throughout this book, K denotes an algebraically closed field.

1.1. Examples. (a) The ring K[t] of all polynomials in the indetermi-
nate t with coefficients in K and the ring K[t1,...,%,] of all polynomials
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in commuting indeterminates t1,...,%, with coeflicients in K are infinite
dimensional K-algebras.

(b) If A is a K-algebra and n € N, then the set M, (A) of all n x n
square matrices with coefficients in A is a K-algebra with respect to the
usual matrix addition and multiplication. The identity of My, (A) is the
.matrix E = diag(1,...,1) € M,(A) with 1 on the main diagonal and zeros
elsewhere. In particular M,,(K) is a K-algebra of dimension n?. A K-basis
of M, (K) is the set of matrices e;;, 1 < 4, j < n, where e;; has the coefficient
1 in the position (3, j) and the coefficient 0 elsewhere.

(c) The subset

K 0 ... 0
K K ... 0
To(K)=1|. . . .
K K ... K

of My, (K) consisting of all triangular matrices [a;;] in M,(K) with zeros
over the main diagonal is a K-subalgebra of M,,(K). If n = 3 then the

subset
K 0 0
A=]0 K 0
K K K

of M3(K) consisting of all lower triangular matrices A = [\;;] € T3(K) with
A21 = 0 is a K-subalgebra of M3(K), and also of T3(K).

(d) Suppose that (I; <) is a finite poset (partially ordered set), where
I={a,,...,a,} and < is a partial order relation on I. The subset

KI={X=[\j] € Ma(K); Aot =0if ap 2 as}

of M, (K) consisting of all matrices A = [)i;] such that A;; = 0 if the relation
a; X a; does not hold in I is a K-subalgebra of M, (K). We call KI the
incidence algebra of the poset (I; <) with coefficients in XK. The matrices
{eij} with a; < a; form a basis of the K-vector space K1I.

Without loss of generality, we may suppose that I = {1,...,n} and
that ¢+ < j implies that ¢ > j in the natural order. This can easily be done
by a suitable renumbering of the elements in I. In this case, K1 takes the

form of the lower triangular matrix algebra

K o ... 0
KI= I{.ZI K 0 ’
Kpi Kp2 ... K

where K;; = K if i X j and K;; = 0 otherwise. For example, if (I; <) is
the poset {1 > 2 > 3 > --- > n} then the algebra K is isomorphic to the
algebra T, (K) in Example 1.1 (c). If (I; <) is the poset {1 > 3 < 2} then
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the incidence algebra K[ is isomorphic to the five-dimensional algebra A
in Example 1.1 (c). If the poset (I; <) is given by I = {1,2,3,4} and the
relations {3 > 4 <2 <1 > 3} then

K 0 0 0
K K 0 0
KI={p o K o
K K K K

(e) The associative ring K {t1,t2) of all polynomials in two noncommu-
ting indeterminates ¢; and t; with coefficients in K is an infinite dimensional
K-algebra. Note that, if I is the two-sided ideal in K'(t;,1;) generated by
the element ¢1t; — tat;, then the K-algebra K(t1,t2)/I is isomorphic to
K [t1 s tg].

(f) Let (G,*) be a finite group with identity element e and let A be a
K-algebra. The group algebra of G with coefficients in A is the K-vector
space AG consisting of all the formal sums Y 9cG 9 Ag; Where Ay € A and
g € G, with the multiplication defined by the formula

Qo ar) O hu)= 3 frgun

g€eq heG f=gheG

Then AG is a K-algebra of dimension |G| - dimk A (here |G| denotes the
order of G) and the element e = el is the identity of AG. If A = K, then
the elements g € G form a basis of KG over K.

For example, if G is a cyclic group of order m, then KG = K[t]/(t™—1).

(g) Assume that A; and A; are K-algebras. The product of the
algebras A; and A; is the algebra A = A; x Ay with the addition and the
multiplication given by the formulas (a1, ag) + (d1,52) = (a1 + b1, a2 + b2)
and (a3, a2)(b1,b2) = (a1b1, azb2), where a;1,b1 € A; and ag,b; € Az. The
identity of A is the element 1 = (1,1) = ey +e2 € Ay x Az, where e = (1,0)
and e; = (0,1).

(h) For any K-algebra A we define the opposite algebra A° of A to
be the K-algebra whose underlying set and vector space structure are just
those of A, but the multiplication * in A°P is defined by formula ¢ * b = ba.

1.2. Definition. The (Jacobson) radical rad A of a K-algebra A is
the intersection of all the maximal right ideals in 4.

It follows from (1.3) that rad A is the intersection of all the maximal left
ideals in A. In particular, rad A is a two-sided ideal.

1.3. Lemma. Let A be a K-algebra and let a € A. The following
conditions are equivalent:

(a) a€rad4;
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(8') a belongs to the intersection of all mazimal left ideals of A;
(b) for any b€ A, the element 1 — ab has a two-sided inverse;
(b") for any b € A, the element 1 — ab has a right inverse;

(c) for any b € A, the element 1 — ba has a two-sided inverse;
(c') for any b € A, the element 1 — ba has a left inverse.

Proof. (a) implies (b’). Let b € A and assume to the contrary that
1 — ab has no right inverse. Then there exists a maximal right ideal I of A
such that 1 —ab€ I. Becausea € radAC I, abe T and 1 € I; thisis a
contradiction. This shows that 1 — ab has a right inverse,

(b’) implies (a). Assume to the contrary that a ¢ rad A and let I
be a maximal right ideal of A such that a ¢ I. Then A = I + aA and
therefore there exist x € I and b € A such that 1 = z + ab. It follows
that £ = 1 — ab € I has no right inverse, contrary to our assumption. The
equivalence of (a’) and (¢’) can be proved in a similar way.

The equivalence of (b) and (c) is a consequence of the following two
simple implications:

(i) If (1 —cd)z =1, then (1 - dc)(1 + dzc) = 1.

(i) If (1 — ed) = 1, then (1 +dyc)(1 — de) = 1.

(b") implies (b). Fix an element b € A. By (b'), there exists an element
¢ € A such that (1 —ab)c = 1. Hence ¢ = 1 — a(—bc) and, according to (b'),
there exists d € A such that 1 = c¢d = d + abed = d + ab. It follows that
d =1~ ab, c is the left inverse of 1 — ab and (b) follows. That (c¢’) implies
(c) follows in a similar way. Because (b) implies (b’) and (c) implies (c’)
obviously, the lemma is proved. O

1.4. Corollary. Let rad A be the radical of an algebra A.

(a) rad A is the intersection of all the mazimal left ideals of A.

(b) rad A is a two-sided ideal and rad( A/rad A) = 0.

(c) If I is a two-sided nilpotent ideal of A, then I C radA. If, in
addition, the algebra A/I is isomorphic to a product K x --- X K of copies
of K, then I =rad A,

Proof. The statements (a) and (b) easily follow from (1.3).

(¢) Assume that I™ = 0 for some m > 0. Let z € I and let a be an
element of A. Then ax € I and therefore (az)™ = 0 for some r > 0. It
follows that the equality (1+ az + (az)? +- -+ + (ax)""*)(1 — az) = 1 holds
for any element a € A, and, according to (1.3), the element z belongs to
rad A. Consequently, I C rad A. To prove the reverse inclusion, assume
that the algebra A/I is isomorphic to a product of copies of K. It follows
that rad(A4/7) = 0. Next, the canonical surjective algebra homomorphism
w: A — A/I carries rad A to rad(4/I) = 0. Indeed, if a € rad A and
n(b) = b+ I, with b € A, is any element of A/I then, by (1.3), 1 — ba is
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invertible in A and therefore the element 7(1—ba) = 1—n(b)n(a) is invertible
in A/I; thus 7(a) € rad A/I = 0, by (1.3). This yields rad A C Kern =1
and finishes the proof. O

1.5. Examples. (a) Let s;,...,3, be positive integers and let 4 =
Klty,...,ta]/ (1, ..., t3"). Because theideal I = (f,,...,%,) of A generated
by the cosets %1,...,tn, of the indeterminates #,,...,t, modulo the ideal
(t3,...,t5) is nilpotent, then (1.4) yields I C rad A. On the other hand,
there is a K-algebra isomorphism A/I & K. It follows that I is a maximal
ideal and therefore rad A = I.

(b) Let I be a finite poset and A = KI be its incidence K-algebra viewed,
as in (1.1)(d), as a subalgebra of the full matrix algebra M,,(K). Then rad A
is the set U of all matrices A = [\;;] € KI with A\j; =0 for i = 1,2,...,n,
and the algebra A/rad A is isomorphic to the product K x --- x K of n
copies of K. Indeed, we note that the set U is clearly a two-sided ideal of
K1, it is easily seen that U™ = 0 and finally the algebra A/U is isomorphic
to the product of n copies of K, thus (1.4)(c) applies.

(c) By applying the preceding arguments, one also shows that the rad-
ical rad A of the lower triangular matrix algebra A = T,(K) of (1.1)(c)
consists of all matrices in A with zeros on the main diagonal. It follows that
(rad A)™ = 0.

In the study of modules over finite dimensional K-algebras over an alge-
braically closed field K an important role is played by the following theorem,
known as the Wedderburn-Malcev theorem.

1.6. Theorem. Let A be a finite dimensional K-algebra. If the field
K is algebraically closed, then there exists a K-subalgebra B of A such that
there is a K-vector space decomposition A = B @ rad A and the restriction
of the canonical surjective algebra homomorphism ©: A — A/rad A to B is
a K-algebra isomorphism.

Proof. See {61, section VI.2] and [131, section 11.6). a

I.2 Modules

2.1. Definition. Let A be a K-algebra. A right A-module (or a right
module over A) is a pair (M, -), where M is a K-vector space and - :
M x A — M, (m,a) — ma, is a binary operation satisfying the following
conditions:

(a) (z+ y)a=za+ ya;

(b) z(a+b)==za+ zb;

(c) z(ab) = (za)b;

d) 1 =uz;
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(e) (zA)a = z(a)) = (za)X
forall z,y € M,a,be Aand A € K.

The definition of a left A-module is analogous. Throughout, we write
M or M, instead of (M, -). We write A4 and 4A whenever we view the
algebra A as a right or left A-module, respectively.

A module M is said to be finite dimensional if the dimension dimyx M
of the underlying K-vector space of M is finite.

A K-subspace M’ of a right A-module M is said to be an A-submodule
of M if ma € M’ for all m € M’ and all a € A. In this case the K-vector
space M/M' has a natural A-module structure such that the canonical
epimorphism 7 : M — M/M’ is an A-module homomorphism.

Let M be a right A-module and let I be a right ideal of A. It is easy to
see that the set M consisting of all sums mja; + ...+ msa,, where s > 1,
my,...,Mms € M and a,,...,a, € I, is a submodule of M.

A right A-module M is said to be generated by the elements m;,...,m,
of M if any elément m € M has the form m = myay + - - - + m,a, for some
a1,...,as € A. In this case, we write M = m;A+ ...+ m,A. A module
M is said to be finitely generated if it is generated by a finite subset of
elements of M.

Let M,..., M, be submodules of a right A-module M. We define
Mi+ ... + M, to be the submodule of M consisting of all sums mj +---+
mg, where my € My,---,m, € M,, and we call it the submodule generated
by M,,..., M,, or the sum of M;y,..., M,.

Note that a right module M over a finite dimensional K-algebra A is
finitely generated if and only if M is finite dimensional. Indeed, if 1,...,Zm
is a K-basis of M, then it is obviously a set of A-generators of M. Con-
versely, if the A-module M is generated by the elements m,,..., m, over A
and £1,...& is a K-basis of A then the set {m;&;5=1,...,n,i=1,...,s}
generates the K-vector space M.

Throughout, we frequently use the following lemma, known as Nakaya-
ma’s lemma.

2.2, Lemma. Let A be a K-algebra, M be a finitely generated right
A-module, and I C rad A be a two-sided ideal of A. If MI = M, then
M=0.

Proof. Suppose that M = MI and M =m;A+---+m,A, that is, M
is generated by the elements m,,...,m;. We proceed by induction on s.
If s = 1, then the equality m1A = m;I implies that m; = myz; for some
z1 € I. Hence my(l — 21) = 0 and therefore m; = 0, because 1 — z; is
invertible. Consequently M = 0, as required.

Assume that s > 2. The equality M = MI implies that there are



