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Preface

In 1854, B. Riemann attempted to study metrics in general forms and introduced the
notion of curvature for a special class of metrics—Riemann metrics. This infinitesi-
mal quantity faithfully reveals the local geometry of Riemann metrics and becomes
the central concept of Riemannian geometry. In 1918, P. Finsler studied the vari-
ational problem in manifolds with a generalized Riemann metric. Thereafter, such
metrics are called Finsler metrics. Later, L. Berwald extended the notion of Rie-
mann curvature to Finsler metrics by introducing the so-called Berwald connection.
Berwald also introduced some non-Riemannian quantities via his connection. Since
then, Finsler geometry has been developed gradually. However, Finsler geometry is
much more complicated than Riemannian geometry. In order to grasp the geometric
meaning of various quantities in Finsler geometry, one can begin the study on the
Randers metrics.

most simple non-Riemannian Finsler metrics

Randers metrics are natural and important Finsler metrics which are defined as
the sum of a Riemann metric and a 1-form. They were derived from the research on
the general relativity and have been widely applied in many areas of natural science,
including biology, physics and psychology, etc. In particular, Randers metrics can be
naturally deduced as the solution of Zermelo navigation problem. Randers metrics
are computable. Thus people can do in-depth computation of various geometric
quantities, hence can understand the geometric properties of such metrics. More
importantly, Randers metrics have very rich non-Riemann curvature properties. The
study of Randers metrics will lead to a better understanding on Finsler metrics.

This book is a monograph about Randers spaces which is written based on the
authors’ many years of research in studying geometry of Randers spaces. The main
purpose of this book is to introduce the basic concepts and important progress in
Finsler geometry via Randers metrics, meanwhile to provide many important and
interesting examples with special curvature properties. This book contains many
important results about Randers metrics obtained in the past decade.

We authors sincerely thank the following institutions for their valuable com-
ments and great help: David Bao, Weiping Zhang, Yibing Shen, Sandor Bécso,
Tran Quoc Binh, Zizhou Tang, Xiaohuan Mo, etc. The authors are very grateful to
S. S. Chern for his great encouragement and support before he passed away. The
authors would like to thank Yanfang Tian, Jinglong Jiang, Feng Mu, Mingao Yuan,
Weiwei Zeng, Chunmei Qin, Lili Zhao, Esra Sengelen and Akbar Tayebi for care-
fully reading through the first version of this book and correcting several mistakes.
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Finally, we want to thank Ms. Liping Wang for her editorial guidance and her much
help for our book.

This book is written based on the authors’ research supported by National Nat-
ural Science Foundation of China (10171117, 10371138, 10671214, 10971239) and
Science Foundation (America Natural) (DMS-0810159).

Xinyue Cheng
Chonggqing, P. R. China

Zhongmin Shen
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December 1, 2011
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Chapter 1

Randers Spaces

Randers spaces are finite dimensional vector spaces equipped with a Randers norm.
Euclidean norm is the most special Randers norm. Roughly speaking, a Randers
norm i’ a shifted Euclidean norm. If the unit sphere of a Euclidean norm is called a
round sphere, then the unit sphere of a Randers norm is an ellipsoid. Randers norms
are special Minkowski norms whose unit sphere is a strong convex hypersurface.
More precise definition is given as follows.

Let V be a finite dimensional vector space. A Minkowski norm on V is a function
F:V — [0, 4+00) which has the following properties:

(a) Fis C* on V\{0};

(b) F is positively homogeneous of degree one, that is, F(A\y) = AF(y) for any
y €V and A > 0;

(c) for any y € V\{0}, the fundamental form g, on Y is an inner product, where

1 92
gy(u,v) = 3 B [Fz(y + su + 1) ][ s=¢—0-

The pair (V, F) is called a Minkowski space. A Minkowski norm F is said to be
reversible if F(—y) = F(y) forye V.

Let (V, F) be an n-dimensional Minkowski space and {e;}?, be a basis for V.
View F(y) = F(y'e;) as a function of () € R”. Put

1 9%F?
9i5(y) = EW@)' (1.1)
Then
gy, v) = gij(y)u'v?, u=d'e;, v=1le. (1.2)

It follows from the homogeneity of F' that
F(y) =\ eu(W)y'y?, y=y'es

hij(y) = F(y) Fyys (y) = 9i5(y) — Fi(y) Fys (y)

Let
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and

hy(u,v) == hi(y)uv?, u=ule, v=r17e;.
We have

hy(u,v) = gy (u, ) — F(y)"2gy (y, u)gy (9, v).

Observe that

hy(u,u) =z gy(u,u) - F(y)_zgy(y,y)gy(u,u) =0.

Thus hy(u,u) > 0 and equality holds if and only if u = Ay for some A. hy is called
the angular form.

1.1 Randers Norms

First, we consider Euclidean norms. Let R™ denote the standard vector space of
dimension n. The standard Euclidean norm |- | on R™ is defined by

Clearly, it is a special Minkowski norm. The pair (R",| - |) is called the stindard
Fuclidean space. More general, let (, ) be an inner product on a vector space V
with a basis {e;}; . Define

aly) =V {y,y) = \/aij’yiyj, y= yiei,

where a;; := (e;,e;). Clearly, a is a Minkowski norm with 9y(u,v) = (u,v) inde-
pendent of y € V\{0}. « is called a Fuclidean norm and the pair (V,a) is called a
FEuclidean space. It is well-known that all Euclidean spaces with the same dimension
are linearly isometric to each other.

Now, we introduce Randers norms. Let a = 1/a;;4"y? be a Euclidean norm on
a vector space V and 8 = b;y¢ be a linear functional on V. Let

Fy) = afy) + B(). (1.3)

It is easy to verify that for any pair of vectors u,v € V,

I}

Flu+v)=alu+v)+ Bu+v)
a(u) + a(v) + B(u) + B(v)

F(u) + F(v).

A
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Let g(u,v) denote the inner product determined by «. Then we have the following
inequality for any pair of vectors y # 0,u € V:

9(y,w) < afy)a(v),

and equality holds if and only if u = Ay for some A. For F(y) = a(y) + 8(y), we
have

(a+ B)., W)y

9y, u)
W)|s) + 45
<F(y)[8w) +aw)] = FQ)F(), (1.4)

1
gy(y,U)=§
=F

and equality holds if and only if u = Ay for some A.
Let b := || 8]}« denote the length of § with respect to a. It is given by

b= 4/a%b;b;,

where (a¥) = (a;;)~!. To find a condition on B under which F = a + g is a

1
Minkowski norm, we compute g;; := = [F?],:,; and obtain the following:

2

0Tl S ) e )2 g

where y; 1= a;;y.
In order to find the formulas for det(gi;) and (¢%7) := (g;;)~"', we need the
following lemma: -

Lemma 1.1.1 ([BaChSh]) Let (gi;) and (my;) be two n x n symmetric matrices
and ¢ = (¢;) be an n-dimensional vector, which satisfy

gij = Mij + Acicy,
where X\ is a constant. Then
det(gij) = (1 + )\Cz) det(mij). (16)

Assume that (my;) is positive definite with (m;;)~! = (m¥Y) and 1 + Ac® # 0. Then
(gi;) is invertible and (g9) = (gi;)~" is given by

g9 =m¥ — —Z__cidd, (1.7)



4 Chapter 1 Randers Spaces

Now, let
o Yi Yj
Myj i= Qg5 + F (bz + E) (bj + é) (1.8)
(my;) is a positive definite matrix. Letting A := «/F and ¢; := b; + y;/a in (1.6),
we get by (1.8) that

det(m;) = det(ai;) [1 + %aij (bi + %) (bj + %)]

=damwﬂy+%(1+2ﬁ+bﬁ}

(83

2F + 3+ ab?
= det(ay) 5.
By (1.7), we get
i _ ij a/F y_z i ﬂ i
m?=a 2+(ﬂ+ab2)/F(a+b)(a+bJ)
=iy___JL__.£ NV L
@ 2F+ﬂ+ab2(a+b)<a+bj>’

where (m*) := (m;;)~!. Further, let A := —1 and ¢; := y;/a. We have

oo o1 [aif - O (Y V(Y )| %Y
1+ Adm¥ec;=1 [a 2F+ﬂ+ab2<a+b)(a+w)]aa
F? ‘
" a2F + B+ ab?)’
By (1.5) ~ (1.7), we obtain the following formulas:
F n+1
det(gij) = (-a—) det(aij), (19)
G 0 a s Mo+, 4
gv = FaJ —ﬁ(bzyj +bjyl)+Ty y’ (1.10)

From the definition of the angular metric tensor, we have the following formula
for Randers metrics:

1 a+f YilYj

by = FRysys = @+ 8) ~(ay — o) = 220 (a - 20).
Clearly, F(y) > 0 for all y # 0 if and only if b < 1. Further, (g;;) is positive

definite if and only if b < 1 ({[BaChSh},[BaRo],[Mal]). In fact, when F(y) > 0,

F..=a+e8>0

1
for any 0 < e < 1. Let gf; == —[F2 By (1.9), we have

2 é]yiyj'

Fz—: n+1
det(95) = (=) det(ai;) > 0.
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Let A{g) < Aa(e) € -+ € Apo1(e) € An(e) denote the eigenvalues of (95;)- The
multiplicity of the eigenvalues might change as e changes, but each eigenvalue A;(¢)
depends on ¢ continuously. Thus, from A;(0) > 0 and det(gf;) > 0 for 0 <e < 1, we
have A;(1) > 0. Namely, (g;;) = (gi;) is positive definite. ,

A Minkowski norm in the form (1.3) is called the Randers norm. Randers norms
were first introduced by physicist G. Randers in 1941 from the standpoint of general
relativity ([Ra]).

1.2 Distortion and Volume Form

Let (V, F) be an n-dimensional Minkowski space and {e;}?; be an arbitrary basis
on V, and {#*}2_; be the basis for V* dual to {e;}" ;. Put
S Vol(B"(1))
7 Vol{(y7) € R*[F(yie;) < 1}
where Vol denotes the Euclidean volume and Vol(B™(1)) denotes the Euclidean
volume of the unit ball in R™. Put

dVp = 0'F01 Ao AO™

It is clear that dVr is well-defined, namely, independent of the choice of a particular
basis. dV is called the volume form of F on V. Put
v/ det(g;;
T(y) := lnM. . (1.12)
oF

It is easy to verify that 7(y) is well-defined. 7 is called the distortion of F.

If F = +/aijy*y’ is a Euclidean norm, then
_ Vol(B(1))

Videt(ai) |

VOl{(yi) € R"|F(yie;) < 1}

oF = 1/det(a;;).

Note that g;;(y) = a;;. We have

Thus

7(y) =In Vdet(ay) =0.
OF
Consider a Randers norm F' = a + 8 on an n-dimensional vector space V with
b:=|Blla <1. Let dVp = gpf* A--- A6™ and dV,, = 0,0 A--- A O™ denote the
volume forms of F' and «, respectively. Let {e;}?_;, be an orthonormal basis for

(V,a). Thus 04 = y/det(a;;) = 1. We may assume that 8 = by!. Then
Q= {(y") e R"|F(y'e;) < 1}
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is a convex body in R™ and o = Vol(B"(1))/Vol(£2). 2 is given by

(=02 ) +O-) I <1,

a=2

Consider the following coordinate transformation, ¥ : (y*) — (u*):

ut = (1 - b2)(yl + ), u® =+1-0b% Y~ (1.13)

b
1-—b?

 sends © onto the unit ball B*(1) and the Jacobian of ¥ : (y*) — (u*) is given by

(1-b2)"F.
Then
Vol(B"(l)):/ dul - du® :/(1_b2)"T“dy1...dy"
B (1) Q
=(1 - b2)"F Vol(Q).

Then

_VOI(BM(1) _ ; _oyng

F= Ny T

Thus for a general base {e;}7~, we have

UF=(1—b2)%lO‘Q, Oq = \/det(aij).

n+4l

dVrp = (1 —b*)"2 dV,. {1.14)

Therefore

Note that
dVer < dV,.

The equality holds if and only if b= 0 (F is a Euclidean norm).
By (1.9), the distortion of F is given by

_— (n+1)1n\/1_1%. (1.15)

Since |3/l < b, we get

(n+1)In 7<(n+1)1n

1 1
— < - .
Vit+b Vvi—b
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1.3 Cartan Torsion
Let (V, F') be an n-dimensional Minkowski space. For a vector y € V\{0}, let

1 8
Cy(u,v,w) := 15:51r [F?(y + su + tv + rw)]

where u,v,w € V. It is easy to see that C, is a symmetric trilinear form on V and

b
s=t=r=0

the homogeneity of F' implies that
Cy(ya v, U)) =0.
The family C = {Cyly € V\{0}} is called the Cartan torsion.
Let {e;}!~, be a basis for V. Put Cj;x(y) := Cy(es, €5, ex). Then
*

1 1 0g;;
Ci(®) = 1 [F) 1y 0) = 55,7 @)

It is easy to see that F is Euclidean if and only if C = 0.
The mean of C, is defined by

n

L(u):= Y g9@)Cyleseju) = Y g9 u)Cik()ur, u=uber.  (116)

=1 1,5=1
The family I = {I,|y € V\{0}} is called the mean Cartan torsion.
Let I;(y) :==I,(e;). Then

L(y) = 9 0)Csk(v) = gz [1n/det(0n(0)) | (1.17)
Note from (1.12) that
Tyi = 831 [ln \/det(gjk(y))].

L(y) = 7. (1.18)

Theorem 1.3.1 (Deicke Theorem) For a Minkowski norm on a vector space, it is
Euclidean if and only if 1= 0.

We obtain

We will prove it only for Randers metrics. Consider a Randers norm F = o+ .
By (1.17) and (1.9), we obtain

Ii(y) = aii [ln \/(azﬂ)nﬂdet(au)} = z(na—ilﬂ)(bi— y—é) (1.19)

Differentiating (1.5) with respect to y* and using (1.19), we obtain

1

Cijr(y) = o (L) hie(y) + L;(w)ha (y) + Ie()hi; (v)], (1.20)
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where h;; are given by (1.11). Thus the mean Cartan torsion I determines the
Cartan torsion in higher dimensions.

By (1.20), one can see that F is Euclidean if and only if I = 0. This is Deicke
Theorem for Randers norms.

Spired by the identity (1.20) for Randers norms, we consider the following trace-
free quantity for Minkowski norm F on V:

Mk (y) = Cij(y) — %H [Ii(y)hjk(y) + I;(y)hir (y) + Ix(y) hij (y)] (1.21)

We obtain a symmetric multi-linear form M, : V xV xV — R defined by My(e;, e;,
ex) = Mijx(y). The family M = {M, | y € V'\ {0}} is called the Matsumoto torsion
of F.

Theorem 1.3.2 ([Ma2],[MaHo|]) When dimension n > 3, F is a Randers norm if
and only if M = 0.

The proof is not trivial, so is omitted.
For a Minkowski space (V, F), define the norm of I and C in the following natural
way:

= sup LW

vuweV\(0} Voy(u,u)

”C”:: sup F(y)|Cy(u,v,w)| )

you,weV\{0} v/ gy (u, u)gy (v, v)gy (w, w)

For Randers norms, we have the following lemma:

Lemma 1.3.1([ChSh], [Sh]) Let F = a+/3 be a Randers norm on an n-dimensional

vector space V. Then
n+1 n+1
11| = 7 V1i-V1i-b< 73 (1.22)
3 / 3
”C”Sﬁ 1-— \/1—b2 < E’ (123)

where b := ||Bla-

Proof We have
1Ll = sup F(y)|L],
yeV\{0}
where

Iyf:= sup O] (1.24)

ueV\{0} v/ gy(u,u)

= \/giinIj. (125)
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By (1.10) and (1.19), one obtains

a2 < [Pt L 2%[2_@1 '
PRI = ("5) m e - (24 (1.26)
Let s := 3(y)/a(y). Then the range of s is [—b, b]. We get
n+1\2 b? — 52
FoPILIP = (25 S
Then
B n+1\2 02— (n+1)2
yg&o}F(y)QHIsz = |Ssl|1£b< 5 ) Tyl (1 —Vio 52).
This gives (1.22). Now (1.23) follows from (1.20) and (1.22). Q.E.D.

1.4 Duality
Let (V, F) be a Minkowski space, and V* denote the vector space dual to V. Define

F* (é—) = sup ﬁ(y)

= T 1.27
veviioy F(y) (1.27)

F* is a Minkowski norm on V* again. Since V** = V, we can define a Minkowski
norm on V' dual to F*. By an elementary argument, one can show that the dual
norm on V = V** must be I, namely,

Fy)= sip <0

cevar(oy F*(€)’
Theorem 1.4.1 ([HrSh]) Let V and V* be dual vector spaces, and F and F* be
dual Minkowski norms on'V and V*, respectively. Then F is a Randers norm if and
only if F* is a Randers norm. Further, for a Randers norm F* = o* + 3* on V*,
the dual norm F = a + (3 is determined by

h(-p% - w) =1, (1.28)

where h is the Euclidean norm dual to o* and w € V is determined by 5*(£) = £(w)
(V& e V).
Proof Let {b;} be a basis for V and {6’} be the dual basis for V*. We denote

a vector in V by y = y’b; and a covector in V* by & = £, Fix any y € V' \ {0},
there is an n € V* such that

Fly) = n(y)

y) = Fe )’ (1.29)
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Thus 7 is a critical point of ¥(§) := &(y)/F*(£). Namely,

F*(m)y* — n@)(@*In;/a*(n) +w') _
F*(n)? '

Yei(n) =

We get

F*(n)y* =n(y) (a*ij"j +u'). (1.30)

By (1.29), we get
a*ij

v = F) (G )

Rewrite it as follows ‘ Ny
yl ; a*z]nj
—wt= 1 1.31)
F@) o (o) (
Note that the Euclidean norm h = y/h;;yty? dual to o* is given by h;; 1= aj;, where
(a;) := (a*)~*. Thus (1.28) follows from (1.31).
Solving (1.28), we obtain a formula for the dual norm F = o + 3, where o =

Vai;y'y? and 8 = b;y* are given by

(1= 1B*]12- ), + B3B3
ai; = s (1.32
IS TS AR (1-32)
b
b= ——2——, 1.33
=62 (1.33)

where (a};) = (a*/)~! and b} := aj;b".

Conversely, let ' = a + 3 be a Randers norm on V, where a = \/a,]y—lyJ and
8 = b;y*. Then by the same argument as above, one can show that the dual norm
on V* is also a Randers norm F* = a* + 3%, where a* = m and B* = b*'¢;
are given by

iy _ (L= BI2)a + b

TSR (1.34)
. bi
b= ———— 1.35
=182 (1.35)
where (a) := (a;;)™! and b* := a¥b;. Q.ED.

Let F* = a* + 3* be a Randers norm on V*, where o* = \/a*¥§;{; and 3* =
b*i¢;. The norm of 3* with respect to a* is given by

”,B*Ila* =\/a;jb*ib*j=\/g*ijb:b;’




