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This volume of the Advances begins with an assessment by Haynes of the
chemistry of one of the most successful homogeneous catalytic processes
applied in industry: the carbonylation of methanol to give acetic acid.
The author traces the development of the chemistry and the history of the
processes catalyzed by rhodium complexes as well as more recent work
with iridium complex catalysts. The chapter includes detailed mechan-
isms of the reaction, elucidation of the roles of ligands and of iodide
cocatalysts, and statements of engineering issues affecting the processes,
such as product purification and recycle and catalyst selectivity and
stability. Polymer-supported rhodium complex catalysts analogous to
those used in solution are also assessed—these too have found industrial
application. Methanol carbonylation can be considered a prototypical
homogeneous catalytic process, illustrating the value of mechanistic
understanding, process improvements associated with modifications of
the chemistry, and the benefits of anchoring the catalyst to a solid sup-
port. The understanding of the chemistry is deep and quantitative, but
challenges remain concerning process engineering issues, such as corro-
sion minimization and catalyst recycle and reclamation.

Renken and Kiwi-Minsker report on microstructured catalytic reac-
tors. The intricate reactor designs are characterized by submillimeter
dimensions and thus high surface-to-volume ratios. The authors provide
a general introduction to the design principles of microstructured reactors
and focus first on gas-solid reactions. Reactors containing randomly
packed particles or a structured bed of catalyst are distinguished from
those with a catalytically active wall coating, and the mass and heat
transfer characteristics of these configurations are described. The high
heat and mass transfer rates that can be achieved as result of the small
dimensions are most beneficial for reactions that proceed rapidly and are
highly exo- or endothermic. A section of the chapter is devoted to reactors
for multiphase reactions, including gas-liquid-solid and liquid-liquid-
solid reactions. One of the major challenges in realizing the designs of
microstructured reactors is the incorporation of the catalyst into the
reactor. Examples of reactions for which microstructured reactors have
been used successfully include the partial oxidation of hydrocarbons,
various hydrogenation reactions, and methanol steam reforming.
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The state of this field is indicated by the mention of the first pilot plant
experiments done with microstructured reactors.

McDaniel provides an exhaustive summary of the chemistry and tech-
nology of olefin polymerization catalyzed by supported Phillips-type cat-
alysts. This chapter is an update of McDaniel’s landmark contribution on
this topic, published in the Advances in 1985 (Vol. 33). A comparison of the
two chapters demonstrates the growing importance of this technology,
which is now used to manufacture 40% of the world’s supply of high-
density polyethylene, corresponding to 12 million kg per annum. This
treatise covers the science of olefin polymerization, including comparisons
of Ziegler-type and metallocene catalysts with the Phillips-type catalysts,
with details of the preparation of Phillips-type catalysts, activation, and
performance, bolstered by extensive tables and figures of data, including
many showing how the properties of the polymer depend on the catalyst
properties. This chapter provides an in-depth assessment of the catalytic
chemistry, including what is understood and what is not, as well as a
summary of the major engineering issues. The chapter is remarkably
detailed in its evaluation of the technology, being an indispensable guide
for anyone working in the field.

B.C. GATES
F.C. JENTOFT
H. KNOZINGER
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Abstract

1

Catalytic Methanol
Carbonylation

Anthony Haynes

The carbonylation of methanol to acetic acid is established as one of
the major industrial applications of homogeneous catalysis. Since the
introduction of a rhodium-catalyzed process by Monsanto four dec-
ades ago, there has been almost continuous activity aimed toward
improving the process and gaining a deeper understanding of the
underlying chemistry. Strategies to improve catalyst performance
and process economics have been developed, resulting in both
rhodium- and iridium-catalyzed systems that operate with high activ-
ity at reduced water concentration, making product purification less
costly. This chapter describes important aspects of the commercial
processes as well as potential strategies for enhancing catalyst
activity, stability, and selectivity. A particular emphasis is placed on
mechanistic aspects, with experimental studies being complemented
in recent years by theoretical investigations. Attempts to anchor
the rhodium catalyst and to influence activity and selectivity using
phosphine ligands are reviewed. Some potential alternative catalytic
routes to acetic acid and derivatives are also summarized.
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Ac acetyl
Ar aryl
COSMO conductor-like screening model
dcpb 1,4-bis(dicyclohexylphosphino)butane
DFT density functional theory
dppb 1,4-bis(diphenylphosphino)butane
dppe 1,2-bis(diphenylphosphino)ethane
dppm bis(diphenylphosphino)methane
dppp 1,3-bis(diphenylphosphino)propane
dppx bis(diphenylphosphino)ortho-xylene
dtbpx bis(di-t-butylphosphino)ortho-xylene
EXAFS extended X-ray absorption fine structure
HPIR high-pressure infrared
HPNMR high-pressure nuclear magnetic resonance
kt/a kilotonnes per annum
Me methyl
NHC N-heterocyclic carbene
PCM polarizable continuum model
Ph phenyl
PHIP para-hydrogen-induced polarization
PVP polyvinylpyrrolidone
QAS quaternary ammonium salt
v/v volume per volume
w/w weight per weight
WGS water gas shift

1. INTRODUCTION

1.1. Historical Context

Acetic acid is an important bulk commodity chemical, with world annual
production capacity of ~9 million tonnes. Its principal use (~40%) is in the
manufacture of vinyl acetate, a monomer of great importance in the
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polymer sector. A range of other acetate esters are also significant deriva-
tives, along with monochloroacetic acid which is an important intermediate
in the production of pesticides. Dehydration of acetic acid can be used to
make acetic anhydride, which is used as an acetylating agent, for example,
in the production of cellulose acetate. Acetic acid also finds a major use as a
solvent for the oxidation of xylene to terephthalic acid, which is required on
a large scale for incorporation into polyethylene terephthalate.

Industrial routes to acetic acid have included oxidation of ethanol
derived from fermentation, hydrolysis of acetylene, and the oxidation of
hydrocarbons such as butane or naphtha. In the late 1950s, the development
of the Wacker process (a PdCl,/CuCl,-catalyzed oxidation of ethylene)
provided a route to acetaldehyde, which could be converted to acetic acid
by subsequent oxidation.

The production of acetic acid by carbonylation of methanol (Equation (1))
can also be traced back to the 1950s when Reppe and coworkers at BASF
developed a cobalt iodide catalyst that was effective for this reaction at
relatively high temperatures and pressures (~250 °C, 600 bar) [1,2].

MeOH + CO — MeCO,H )

The process based on the cobalt-catalyzed reaction was commercia-
lized by BASF [3,4] but proved not to be so selective as subsequent
processes, with an acetic acid yield of 90% (based on methanol feedstock)
and 70% (based on CO). The major organic by-products were higher
alcohols, aldehydes, and carboxylic acids that required demanding and
expensive separation procedures to give acetic acid of sufficient purity.

Much higher catalytic activity and selectivity under milder conditions
(~175 °C, 30 bar) was revealed by Paulik and Roth at Monsanto, who
used an iodide-promoted rhodium complex catalyst [5]. In the same short
communication reporting the catalytic reaction, preliminary suggestions
concerning the catalytic mechanism were made, and iridium was identi-
fied as having comparable activity to rhodium. Monsanto selected the
rhodium/iodide catalyst for commercialization, and the first plant based
on this technology began production in Texas City in 1970. The so-called
Monsanto process became the dominant method for manufacture of
acetic acid during the 1970s and 1980s, such that by 1991 it accounted
for ~55% of global acetic acid production. It achieved selectivity of >99%
(based on methanol) but only ~85% based on CO, which is also con-
sumed by the water gas shift (WGS) reaction (Equation (2)):

CO + H,O0 — CO, + H, 2)

The process involving the rhodium/iodide combination was operated
by other companies under license from Monsanto, including BP Chemicals
and Hoechst-Celanese. In 1986, BP Chemicals acquired the licensing rights



