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Preface

As an undergraduate, I was offered a reading course on the representation theory of
finite groups. When I learned this basically meant studying homomorphisms from
groups into matrices, I was not impressed. In its place I opted for a reading course
on the much more glamorous sounding topic of muitilinear algebra. Ironically, when
I finally took a course on representation theory from B. Kostant in graduate school, 1
was immediately captivated.

In broad terms, representation theory is simply the study of symmetry. In prac-
tice, the theory often begins by classifying all the ways in which a group acts on
vector spaces and then moves into questions of decomposition, unitarity, geometric
realizations, and special structures. In general, each of these problems is extremely
difficult. However in the case of compact Lie groups, answers to most of these ques-
tions are well understood. As a result, the theory of compact Lie groups is used
extensively as a stepping stone in the study of noncompact Lie groups.

Regarding prerequisites for this text, the reader must first be familiar with the
definition of a group and basic topology. Secondly, elementary knowledge of differ-
ential geometry is assumed. Students lacking a formal course in manifold theory will
be able to follow most of this book if they are willing to take a few facts on faith.
This mostly consists of accepting the existence of an invariant integral in §1.4.1.Ina
bit more detail, the notion of a submanifold is used in §1.1.3, the theory of covering
spaces is used in §1.2, §1.3, §4.2.3, and §7.3.6, integral curves are used in §4.1.2,
and Frobenius’ theorem on integral submanifolds is used in the proof of Theorem
4.14. A third prerequisite is elementary functional analysis. Again, students lacking
formal course work in this area can follow most of the text if they are willing to
assume a few facts. In particular, the Spectral Theorem for normal bounded opera-
tors is used in the proof of Theorem 3.12, vector-valued integration is introduced in
§3.2.2, and the Spectral Theorem for compact self-adjomt operators is used in the
proof of Lemma 3.13.

The text assumes no prior knowledge of Lie groups or Lie algebras and so all
the necessary theory is developed here. Students already familiar with Lie groups
can quickly skim most of Chapters 1 and 4. Similarly, students familiar with Lie
algebras can quickly skim most of Chapter 6.
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The book is organized as follows. Chapter 1 lays out the basic definitions, exam-
ples, and theory of compact Lie groups. Though the construction of the spin groups
in §1.3 is very important to later representation theory and mathematical physics,
this material can be easily omitted on a first reading. Doing so allows for a more
rapid transition to the harmonic analysis in Chapter 3. A similar remark holds for the
construction of the spin representations in §2.1.2.4. Chapter 2 introduces the concept
of a finite-dimensional representation. Examples, Schur’s Lemma, unitarity, and the
canonical decomposition are developed here. Chapter 3 begins with matrix coeffi-
cients and character theory. It culminates in the celebrated Peter—Weyl Theorem and
its corresponding Fourier theory.

Up through Chapter 3, the notion of a Lie algebra is unnecessary. In order to
progress further, Chapter 4 takes up their study. Since this book works with compact
Lie groups, it suffices to consider linear Lie groups which allows for a fair amount
of differential geometry to be bypassed. Chapter 5 examines maximal tori and Car-
tan subalgebras. The Maximal Torus Theorem, Dynkin’s Formula, the Commutator
Theorem, and basic structural results are given. Chapter 6 introduces weights, roots,
the Cartan involution, the Killing form, the standard s{(2, C), various lattices, and
the Weyl group. Chapter 7 uses all this technology to -prove the Weyl Integration
Formula, the Weyl Character Formula, the Highest Weight Theorem, and the Borel—
Weil Theorem.

Since this work is intended as a textbook, most references are given only in the
bibliography. The interested reader may consult [61] or [34] for brief historical out-
lines of the theory. With that said, there are a number of resources that had a powerful
impact on this work and to which I am greatly indebted. First, the excellent lectures
of B. Kostant and D. Vogan shaped my view of the subject. Notes from those lec-
tures were used extensively in certain sections of this text. Second, any book writien
by A. Knapp on Lie theory is a tremendous asset to all students in the field. In par-
ticular, [61] was an extremely valuable resource. Third, although many other works
deserve recommendation, there are four outstanding texts that were especially in-
fluential: [34] by Duistermaat and Kolk, [72] by Rossmann, [70] by Onishchik and
Vinberg, and [52] by Hoffmann and Morris. Many thanks also go to C. Conley who
took up the onerous burden of reading certain parts of the text and making helpful
suggestions. Finally, the author is grateful to the Baylor Sabbatical Committee for its
support during parts of the preparation of this text.

Mark Sepanski
March 2006
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1

Compact Lie Groups

1.1 Basic Notions

1.1.1 Manifolds

Lie theory is the study of symmetry springing from the intersection of algebra, anal-
ysis, and geometry. Less poetically, Lie groups are simultaneously groups and man-
ifolds. In this section, we recall the definition of a manifold (see [8] or [88] for more
detail). Let n € N.

Definition 1.1. An n-dimensional ropological manifold is a second countable (i.e.,
possessing a countable basis for the topology) Hausdorff topological space M that is
locally homeomorphic to an open subset of R”.

This means that for all m € M there exists a homeomorphism ¢ : U — V
for some open neighborhood U of m and an open neighborhood V of R”. Such a
homeomorphism ¢ is called a chart.

Definition 1.2. An n-dimensional smooth manifold is a topological manifold M
along with a collection of charts, {¢, : Uy, — V,}, called an atlas, so that

a) M =u,U, and

(2) For all o, B with U, N Ug # @, the transition map ¢, 5 = ¢ o o
@a(Uy NUp) — 9p(U, N Ug) is a smooth map on R”.

It is an elementary fact that each atlas can be completed to a unique maximal
atlas containing the original. By common convention, a manifold’s atlas will always
be extended to this completion.

Besides R", common examples of manifolds include the n-sphere,

S"={x e R™ | |Ix|| =1},
where ||-|| denotes the standard Euclidean norm, and the n-torus,
T"=8"x 8" x.--x S

~—

n copies
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Another important manifold is real projective space, P(R"), which is the n-
dimensional compact manifold of all lines in R"*!. It may be alternately realized as
R7+1\ {0} modulo the equivalence relation x ~ Ax for x € R*1\{0} and X € R\{0},
or as $” modulo the equivalence relation x ~ +x for x € §". More generally, the
Grassmannian, Gry(R"), consists of all k-planes in R”. It is a compact manifold of
dimension k(n — k) and reduces to P(R"~!) when k = 1.

Write M, ,,(F) for the set of n x m matrices over IF where [ is either R or C. By
looking at each coordinate, M, _, {R) may be identified with R™ and M,, ,,(C) with
R Since the determinant is continuous on M, ,(F), we see det™'{0} is a closed
subset. Thus the general linear group

(1.3) GL(n,F)={g € M, ,(IF) | g is invertible}

is an open subset of M, ,(F) and therefore a manifold. In a similar spirit, for any
finite-dimensional vector space V over IF, we write G L(V) for the set of invertible
linear transformations on V.

1.1.2 Lie Groups

Definition 1.4. A Lie group G is a group and a manifold so that
(1) the multiplication map u : G x G — G given by u(g, g’) = gg’ is smooth and
(2) the inverse mapt: G — G by 1(g) = g~ is smooth.

A trivial example of a Lie group is furnished by R” with its additive group struc-
ture. A slightly fancier example of a Lie group is given by S'. In this case, the group
structure is inherited from multiplication in C\ {0} via the identification

S'={zeC|lz| = 1}.

However, the most interesting example of a Lie group so far is GL(n,F). To
verify GL(n,F) is a Lie group, first observe that multiplication is smooth since it
is a polynomial map in the coordinates. Checking that the inverse map is smooth
requires the standard linear algebra formula g~ ! = adj(g)/ det g, where the adj(g) is
the transpose of the matrix of cofactors. In particular, the coordinates of adj(g) are
polynomial functions in the coordinates of g and det g is a nonvanishing polynomial
on G L(n, F) so the inverse is a smooth map.

Writing down further examples of Lie groups requires a bit more machinery.
In fact, most of our future examples of Lie groups arise naturally as subgroups of
GL(n, ). To this end, we next develop the notion of a Lie subgroup.

1.1.3 Lie Subgroups and Homomorphisms

Recall that an (immersed) submanifold N of M is the image of a manifold N’ under
an injective immersion ¢ : N’ — M (i.e., a one-to-one smooth map whose differ-
ential has full rank at each point of N*) together with the manifold structure on N
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making ¢ : N° — N a diffeomorphism. It is a familiar fact from differential ge-
ometry that the resulting topology on N may not coincide with the relative topology
on N as a subset of M. A submanifold N whose topology agrees with the relative
topology is called a regular (or imbedded) submanifold.

Defining the notion of a Lie subgroup is very similar. Essentially the word ho-
momorphism needs to be thrown in.

Definition 1.5. A Lie subgroup H of a Lie group G is the image in G of a Lie group
H’ under an injective immersive homomorphism ¢ : H" — G together with the Lie
group structure on H making ¢ : H' — H a diffeomorphism.

The map ¢ in the above definition is required to be smooth. However, we will see
in Exercise 4.13 that it actually suffices to verify that ¢ is continuous.

As with manifolds, a Lie subgroup is not required to be a regular submanifold.
A typical example of this phenomenon is constructed by wrapping a line around the
torus at an irrational angle {Exercise 1.5). However, regular Lie subgroups play a
special role and there happens to be a remarkably simple criterion for determining
when Lie subgroups are regular.

Theorem 1.6. Let G be a Lie group and H € G a subgroup (with no manifold
assumption). Then H is a regular Lie subgroup if and only if H is closed.

The proof of this theorem requires a tair amount of effort. Although some of the
necessary machinery is developed in §4.1.2, the proof lies almost entirely within the
purview of a course on differential geometry. For the sake of clarity of exposition
and since the result is only used to efficiently construct examples of Lie groups in
§1.1.4 and §1.3.2, the proof of this theorem is relegated to Exercise 4.28. While we
are busy putting off work, we record another useful theorem whose proof, for similar
reasons, can also be left to a course on differential geometry (e.g., [8] or [88]). We
note, however, that a proof of this result follows almost immediately once Theorem
4.6 is established.

Theorem 1.7. Let H be a closed subgroup of a Lie group G. Then there is a unique
manifold structure on the quotient space G /H so the projectionmapn : G — G/H
is smooth, and so there exisr local smooth sections of G/ H into G.

Pressing on, an immediate corollary of Theorem 1.6 provides an extremely useful
method of constructing new Lie groups. The corollary requires the well-known fact
that when f : H — M is a smooth map of manifolds with f(H) € N, N a regular
submanifold of M, then f : H — N is also a smooth map (see {8] or [88]).

Corollary 1.8. A closed subgroup of a Lie group is a Lie group in its own right with
respect to the relative topology.

Another common method of constructing Lie groups depends on the Rank The-
orem from differential geometry.
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Definition 1.9. A homomorphism of Lie groups is a smooth homomorphism between
two Lie groups.

Theorem 1.10. If G and G’ are Lie groups and ¢ : G — G’ is a homomorphism of
Lie groups, then @ has constant rank and er ¢ is a (closed) regular Lie subgroup of
G of dimension dim G — 1k ¢ where 1k ¢ is the rank of the differential of .

Proof. 1t is well known (see [8]) that if a smooth map ¢ has constant rank, then
¢~'{e} is a closed regular submanifold of G of dimension dim G —rk ¢. Since ker @ is
a subgroup, it suffices to show that ¢ has constant rank. Write [, for left translation by
g¢. Because ¢ is a homomorphism, g ol, = I, o, and since I, is a diffeomorphism,
the rank result follows by taking differentials. w

1.1.4 Compact Classical Lie Groups

With the help of Corollary 1.8, it is easy to write down new Lie groups. The first is
the special linear group

SL(n,F) = {g € GL(n,F) | detg = 1}.

As SL(n, ) is a closed subgroup of G L(n, ), it follows that it is a Lie group.

Using similar techniques, we next write down four infinite families of compact
Lie groups collectively known as the classical compact Lie groups: SO(2n + 1),
SO@2n), SU(n), and Sp(n).

1.1.4.1 SO(n) The orthogonal group is defined as
O(n)={geGL(n,R)|g'g=1},

where g’ denotes the transpose of g. The orthogonal group is a closed subgroup of
GL(n,R), so Corollary 1.8 implies that O(n) is a Lie group. Since each column of
an orthogonal matrix is a unit vector, we see that topologically O(r) may be thought
of as a closed subset of $77 ! x §"7) x ... x s C R™ (n copies). In particular,
O(n) is a compact Lie group.

The special orthogonal group (or rotation group) is defined as

SOn)={g € O(n)|detg =1}.

This is a closed subgroup of O(n), and so SO(n) is also a compact Lie group.

Although not obvious at the moment, the behavior of §O (n) depends heavily on
the parity of n. This will become pronounced starting in §6.1.4. For this reason, the
special orthogonal groups are considered to embody two separate infinite families:
SO(2n + 1) and SO(2n).
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1.1.4.2 SU(n) The unitary group is defined as
Un)={ge€GL0n,C)|g'g=1},

where g* denotes the complex conjugate transpose of g. The unitary group is a closed
subgroup of GL(n,C), and so U(n) is a Lie group. As each column of a unitary
matrix is a unit vector, we see that U (n) may be thought of, topologically, as a closed
subset of 2171 x §21-1 x ... x?~! € R (n copies). In particular, U(n) is a
compact Lie group.

Likewise, the special unitary group is defined as

SUMn)=1{geU(n)|detg = 1}.

As usual, this is a closed subgroup of U(n), and so SU(n) is also a compact Lie
group. The special case of n = 2 will play an especially important future role. It is
straightforward to check (Exercise 1.8) that

(1.11) SU(2)={<Z —ab)(a,beCand |al2+|b|2=1]

so that topologically SU(2) = §°

1.1.4.3 Sp(n) The final compact classical Lie group, the symplectic group, ought to
be defined as

(1.12) Spny={g e GL(n,H) | g*¢g = 1},

where H = {a +ib + jc + kd | a,b,c,d € R} denotes the guaternions and g*
denotes the quaternionic conjugate transpose of g. However, H is a noncommutative
division algebra, so understanding the meaning of G L(n, H) takes a bit more work.
Once this is done, Equation 1.12 will become the honest definition of Sp(n).

To begin, view H" as a right vector space with respect to scalar multiplication and
let M,, . (H) denote the set of n xn matrices over H. By using matrix multiplication on
the left, M, ,(H) may therefore be identified with the set of H-linear transformations
of H". Thus the old definition of GL(n,F) in Equation 1.3 can be carried over to
define GL(n, H) = {g € M, (1) | g is an invertible transformation of H"}.

Verifying that GL(n,H) is a Lie group, unfortunately, requires more work. In
the case of GL(n,F) in §1.1.2, that work was done by the determinant function
which is no longer readily available for GL(n, H). Instead, we embed G L(n, H)
into GL(2n, C) as follows.

Observe that any v € H can be uniquely written as v = g + jb fora,b €
C. Thus there is a well-defined C-linear isomorphism # : H* — C?' given by
vy, ... ) = (@1,-..,an,b1,...,by) where v, =ap, + jb,, a,,,b € (C Use
this to define a C-linear injection of a]gebras d - M, n(H) - M, ,(C)by X =
®oX ot~ for X € M, ,(H) with respect to the usual identification of matrices as
linear maps. It is straightforward to verify (Exercise 1.12) that when X is uniquely
writtenas X = A+ jB for A, B € M, ,(C), then
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~ A —B
(1.13) 3(A+B) (B - )
where A denotes complex conjugation of A. Thus ¥ is a C-linear algebra isomor-
phism from M, , (H) to

M2n.2n((c)lﬂl = {(g "‘B) | A,Be Mn,n((c)}-

A

An alternate way of checking this is to first let r; denote scalar multiplication
by j on HP", i.e., right multiplication by j. It is easy to verify (Exercise 1.12) that
9r;®~'z = J7Z for z € C* where

0 —1,
J= ( 0 ) .
Since & is a C-linear isomorphism, the image of & consists of all ¥ € M, 2,(C)
commuting with 9r;9 ' so that My, 2,(C)u = {Y € M2, (C) | YJ = JY}.

Finally, observe that X is invertible if and only if #X is invertible. In particular,

M, , (H) may be thought of as R4 and, since det od is contmuous G L(n, H) is the
open set in M, ,(H) defined by the complement of (det oz?) 1{0}. Since GL(n, H)) is
now clearly a Lie group, Equation 1.12 shows that Sp(n) is a Lie group by Corollary
1.8. As with the previous examples, Sp(n) is compact since each column vector is a
unit vector in H* = R*",

As an aside, Dieudonné developed the notion of determinant suitable for M, , (H)
(see [2], 151-158). This quaternionic determinant has most of the nice properties of
the usual determinant and it turns out that elements of Sp(n) always have determin-
ant 1.

There is another useful realization for Sp(n) besides the one given in Equation
1.12. The isomorphism is given by # and it remains only to describe the image
of Sp(n) under V. First, it is s easy to verify (Exercise 1.12) that 19(X ) = (1?X)*
for X € M, ,(H), and thus ﬁSp(n) U(2n) N My, 2,(C)g. This answer can be
reshaped further. Define

Sp(n,C) ={g e GL(2n,C) | g'Jg = J}
so that U (2n)N M3, 2,(C)g = URn)NSp(n, C). Hence D realizes the isomorphism:
(1.14) Sp(n) = U(2n) N My, 20 (C)m
= U@n) N Spn, C).
1.1.5 Exercises

Exercise 1.1 Show that S” is a manifold that can be equipped with an atlas consist-
ing of only two charts.



