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Preface

This book, written in memory of Professor WZ Chien (1912-2010) with great respect,
discusses a two-step perturbation method and its applications in the nonlinear analysis of
elastic structures. The capability to predict the nonlinear response of beams, plates and shells
when subjected to thermal and mechanical loads is of prime interest to structural analysis. In
fact, many structures are subjected to high load levels that may result in nonlinear load—
deflection relationships due to large deformations. One of the important problems deserving
special attention is the study of their nonlinear response to large deflection, postbuckling and
nonlinear vibration.

The major difference between the linear analysis and the nonlinear analysis of structures
lies in that the principle of superposition is not valid in the latter. Approximate analytical
methods, for example, the Ritz method and the Galerkin method, have been used mainly to
study nonlinear bending, postbuckling and nonlinear vibration of beams, plates and shells. It
was proved that, for nonsymmetric cross-ply laminated plates and functionally graded mate-
rial (FGM) plates with four edges simply supported subjected to uniaxial or biaxial compres-
sion, or uniform temperature rise, bifurcation buckling did not exist due to the
stretching/bending coupling effect. Unfortunately, for nonsymmetric cross-ply laminated
plates and FGM plates, the Ritz method or finite element method usually obtain physically
incorrect solutions that are inconsistent with the prebuckled state. Further, in the traditional
perturbation method, the perturbation parameter is no longer a small perturbation parameter
in the large deflection, postbuckling and large amplitude vibration region when the plate/-
shell deflection is sufficiently large. Hence, the accuracy and effectiveness of traditional per-
turbation solutions for stronger nonlinear problems are doubted by many researchers.

A two-step perturbation method was first proposed by Shen and Zhang (1988) for the post-
buckling analysis of isotropic plates. This approach gives explicit analytical expressions for
all the variables in the postbuckling range. This approach provides a good physical insight
into the problem considered, and the influence of all the parameters on the solution can be
assessed easily. The advantage of this method is that it is unnecessary to guess the forms of
solutions which can be obtained step by step, and such solutions satisfy both governing equa-
tions and boundary conditions accurately in the asymptotic sense. This approach is then suc-
cessfully used in solving many nonlinear bending, postbuckling and nonlinear vibration
problems of beams, plates and shells made of advanced composite materials. This approach
may find more extensive applications in the nonlinear analysis of nanoscale structures.

This book comprises seven chapters involving the latest research materials. The present
chapter and section titles are a significant indication of the total content. Each chapter
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xii Preface

contains adequate introductory material so that an engineering graduate who is familiar with
a basic understanding of beams, plates and shells will be able to follow it. The advantages
and disadvantages of the traditional perturbation method are introduced in Chapter 1. A two-
step perturbation method and its application in the nonlinear analysis of beams, plates and
shells are presented in detail in each chapter. Some difficult tasks in the nonlinear analysis of
elastic structures are included, for example: the nonlinear analysis of Euler—Bernoulli beams
based on an exact expression of the curvature is presented in Chapter 2; the nonlinear vibra-
tion analysis of functionally graded fiber-reinforced composite laminated plates in hygro-
thermal environments is presented in Chapter 3; the geometrically nonlinear bending
analysis of shear deformable plates with four free edges resting on elastic foundations is
presented in Chapter 4; the contact postbuckling analysis of composite laminated plates rest-
ing on tensionless elastic foundations subjected to thermal and mechanical loads is presented
in Chapter 5; the nonlinear vibration of functionally graded fiber-reinforced composite lami-
nated cylindrical shells without or with piezoelectric fiber-reinforced composite actuators is
presented in Chapter 6; the contact postbuckling analysis of anisotropic cylindrical shells
surrounded by an elastic medium subjected to mechanical loads in thermal environments is
presented in Chapter 7. Most of the solutions presented in these chapters are the results of
investigations made by the author and his collaborators since 1997. The results presented
herein may be benchmarks for checking the validity and accuracy of other numerical
solutions.

At the time of writing this book, despite a number of existing texts in the theory and analy-
sis of plates and/or shells, there is not a single book which is devoted entirely to solve geo-
metrically nonlinear problems of beams, plates and shells by means of a two-step
perturbation method. It is hoped that this book will fill the gap to some extent and that it
might be used as a valuable reference source for postgraduate students, engineers, scientists
and applied mathematicians in this field.

The author wishes to record his appreciation to the National Natural Science Foundation
of China (grants 59975058, 50375091, 51279103) for the partial financial support of this
work, and to his wife for encouragement and forbearance.
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1

Traditional Perturbation Method

1.1 Introduction

The perturbation method is one of the most appropriate methods which can be used to solve
various boundary-value problems in elastic structures. It provides a useful approximate ana-
Iytical tool for solving a large class of nonlinear equations. The traditional perturbation
method is also called the small perturbation method. Using the perturbation method, a com-
plex nonlinear equation may be decomposed into an infinite number of relatively easy ones.
In this method, the solution of the original equation is considered as the sum of the solution
of each order of perturbation equations and a sequence of terms with increasing power of a
small perturbation parameter as their coefficients, so that the first few terms reveal the impor-
tant feature of the solution. Hence, the solution procedure is convenient compared to solving
the original nonlinear equation directly.

The advantage of this method is that it provides solutions to satisfy both governing equa-
tions and boundary conditions accurately in the asymptotic sense. Unlike numerical meth-
ods, the perturbation approach provides a good physical insight into the problem considered,
and the influence of all the parameters on the solution can be assessed easily. The big differ-
ence between the perturbation method and other approximate methods, like the Galerkin
method and the Ritz method, is that it is not necessary to guess the forms of solutions. In
contrast, the accuracy of applying the Ritz and Galerkin methods depends strongly on the
choice of the admissible function which does not satisfy all the geometrical and natural
boundary conditions, and usually does not satisfy equilibrium equations or motion equations.

The perturbation method is interesting because it can be used for structural nonlinear anal-
ysis in various fields such as nonlinear bending, postbuckling and large amplitude vibration
of beam, plate and shell structures. However, the successful application of the perturbation
method depends largely on the choice of the small perturbation parameter. This perturbation
parameter may obviously appear in the original problem or may be introduced by research-
ers. Usually, the nondimensional load or the nondimensional deflection or both of these are
selected as the perturbation parameter in the traditional perturbation method.

A Two-Step Perturbation Method in Nonlinear Analysis of Beams, Plates and Shells, First Edition. Hui-Shen Shen.
© 2013 by Higher Education Press. All rights reserved.



2 A Two-Step Perturbation Method in Nonlinear Analysis of Beams, Plates and Shells

1.2 Load-type Perturbation Method

The load-type perturbation method is mainly used in large deflection analysis and postbuck-
ling analysis of plates. Vincent (1931) first studied the large deflection of an isotropic circu-
lar plate subjected to uniform pressure by using a load-type perturbation method. In his
study, the nondimensional load [¢r*(1 — 12)/(Eh")] is taken as a small perturbation parame-
ter, where ¢ is the transverse uniform pressure, / is the plate thickness, r is the radius of the
circular plate and E and v (= 0.25) are the Young’s modulus and Poisson’s ratio, respec-
tively, of the plate. The boundary condition is assumed to be simply supported with or with-
out in-plane displacements, referred to as “movable” and “immovable”, respectively. The
load—deflection relationship obtained by Vincent (1931) may be written as

3 5
W qr (qr4 > ((lr4 >
—0738( L) —0.122( L) +0.0662( L) (movable 1.1
h (Elf') Eh* Eh* ( ) (11
and
w 4 A4N\3 4N\d
" —0.738 (%) ~0.766 (%) +2.36 (%) (immovable) (12)
h Eh Eh Eh

where W,, is the maximum deflection of the plate.

The solutions of Equations 1.1 and 1.2 are little better than the solutions obtained by
Chien (1954), in which the nondimensional central deflection (W, /h) is used as the perturba-
tion parameter. This is because there exists a great discrepancy between the experimental
results and the theoretical predictions of Vincent (1931) when the plate deflection is suffi-
ciently large, as reported by Chen and Guang (1981).

In contrast, Stein (1959) studied the postbuckling behavior of an isotropic rectangular
plate subjected to uniaxial compression by using a load-type perturbation method. In his
study, the nondimensional load [(P—P,,)/P,]"? is taken as a small perturbation parameter,
where P, is the critical buckling load for the same plate under uniaxial compression. The
von Karman equation was expressed in terms of three displacements. The boundary condi-
tion is assumed to be simply supported. The postbuckling load—shortening relationship
obtained by Stein (1959) may be written as

= — ; 5 ,
47D 2 82\ m* +n*pt P 2 B2 (m* + B

8 8 28
m n
, [ ;

12(1 — v?)b* A, Ph  1m? ((m2 + nzﬂz)Z) <P — Pt.,> 3 m?
a

(M2 +92B°)" — (m? + 22 (9m2 + 2f2)* — 9(m? + w2 )’

(2 + 2B\ (P - P\
x( m* + n*pt )( P, > (1.3)
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in which a and b are the length and width of the plate, = a/b is the plate aspect ratio, Ay is
the plate end-shortening displacement in the X direction and D = ER*/[12(1 — v?)] is the
flexural rigidity of the plate.

This load-type perturbation method was then extended to the case of postbuckling analysis
of an orthotropic rectangular plate by Chandra and Raju (1973). The postbuckling load-
shortening relationship was obtained for a perfect plate under uniaxial compression.
Although the resultant expression for an isotropic plate is coincident with that included in
the work of Stein (1959), the higher order term in the solution of Chandra and Raju (1973) is
incorrect, as reported by Blazquez and Picon (2010).

From the load—deflection curve of the circular plate, the condition of [gr*(1 — v?)/Eh?] = 1
is equivalent to (W./h)=0.1-0.2, and this condition can easily be exceeded in the large
deflection region. In contrast, the condition of P <2P,, is easily satisfied for most plates in
the postbuckling region, and therefore, the load-type perturbation method is better for use
in the postbuckling analysis than in the large deflection analysis of a plate. As has been shown
(Zhang and Fan, 1984), in many cases when the load-type perturbation method is used, the
postbuckling load—deflection curve does not converge to the exact solution when the plate
deflection is sufficiently large. Hence, it is not a good option for nonlinear analysis of plates
by using the load-type perturbation method.

1.3 Deflection-type Perturbation Method

Chien (1947) is the pioneer in studying the large deflection of circular plates by using the
deflection-type perturbation method. For an isotropic circular plate (v = 0.3) with a movable
in-plane boundary condition, the load—deflection relationship obtained by Chien (1954) may
be written as

4 3
qrt W, W,
=0.87 152 s
1 8<,>+0095(h> (1.4)

where W, is the central deflection of the plate.

This method is easy to follow and has been applied successfully to solve many large
deflection problems of plates. For example, Yeh (1953) presented the large deflection analy-
sis of annular plates. Chien and Yeh (1954) presented the large deflection analysis of circular
plates with various boundary conditions under uniformly distributed or concentrated load.
Hu (1954) presented the large deflection analysis of circular plates under the combined
action of uniformly distributed and concentrated loads. Chien et al. (1992) presented the
large deflection analysis of elliptical plates with clamped boundary conditions subjected to
uniform pressure. All these important contributions are of interest to the research
community.

The large deflection analysis of rectangular plates is more complicated than that of circu-
lar plates. Chien and Yeh (1957) presented the large deflection analysis of an isotropic rect-
angular plate with clamped boundary conditions subjected to uniform pressure by using the
deflection-type perturbation method, in which the nondimensional central deflection (W./h)
is taken as a small perturbation parameter. By solving the von Kdrman equation expressed in
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terms of three displacements, the load—deflection relationship for an isotropic square plate
(v = 1/3) can be written as

4

3
qa W, W,
9“ _ 50, —°) +24.37716( =< 1.5
= 503815(h>+ <h> (1.5)

Similarly, Kan and Huang (1967) presented the large deflection analysis of a sandwich
plate with clamped boundary conditions subjected to uniform pressure. By solving the non-
linear equation expressed in terms of three displacements, the load—deflection relationship
for a sandwich square plate (v = 0.3) can be written as

3 ) W(- 3
22 =835 <V—Vi> n 3.8532( ) (1.6)
Ehyh, h, h,

where /iy and h, are the thicknesses of the face sheet and core layer.

Chia (1980) wrote a good book for the nonlinear analysis of composite thin plates. This
book provides a lot of examples for the large deflection analysis of orthotropic rectangular
plates (Chia, 1972a), orthotropic circular plates (Nowinski, 1960), orthotropic elliptical
plates (Prabhakara and Chia, 1975) and anisotropic rectangular plates (Chia, 1972b).

Moreover, Dym and Hoff (1968) studied the postbuckling of an isotropic cylindrical shell
under axial compression by using the deflection-type perturbation method, in which the non-
dimensional maximum deflection (W,,/h) is taken as a small perturbation parameter. For a
mixed boundary-value problem of elastic cylindrical shells, the Karmén-type equation
expressed in terms of a transverse displacement W and a stress function F is more convenient
than that expressed in terms of three displacements U, Vand W. By solving the Kdrman-type
equations, the asymptotic solutions up to fourth order for the postbuckling load—shortening
relationship were obtained.

Actually, in Koiter’s initial postbuckling theory (Koiter, 1945, 1963), the large deflection
solution of an isotropic cylindrical shell was first determined by using the deflection-type
perturbation method and then performed the imperfection-sensitive analysis of the same
cylindrical shell under mechanical loads, as reported by Budiansky and Amazigo (1968).
Like in the case of Dym and Hoff (1968), these solutions can not predict the full postbuck-
ling equilibrium path of the cylindrical shell. The applications of a similar solution method-
ology could be found in the free and forced vibration analyses of elastic structures (Rehfield,
1973, 1974).

1.4 Multi-parameter Perturbation Method

Besides the single-parameter perturbation method as described in Sections 1.2 and 1.3, a
multi-parameter perturbation method is also sometimes used in the nonlinear analysis of
elastic structures. Among those, Hu (1954) presented the large deflection analysis of circular
plates under combined action of uniformly distributed and concentrated loads. In his study,
both nondimensional uniform pressure (gr*/Eh*) and nondimensional concentrated load
(Pr?/mEh") were taken as two small perturbation parameters. In such a case, the solution
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procedure is more complicated. He found that the solution is poor when it converges slowly
or can actually be divergent when these two perturbation parameters are not very small.
Chien (2002) presented the large deflection analysis of a cantilever beam subjected to a uni-
form pressure. Unlike in the case of Hu (1954), nondimensional uniform pressure
(¢L*/12EI) and nondimensional end displacement (6A/L) were taken as two small perturba-
tion parameters, where EI is the flexural rigidity of the beam, L is the undeformed length of
the beam and A is the vertical displacement at the free end. Andrianov et al. (2005) presented
the nonlinear natural in-plane vibrations of an isotropic rectangular plate with clamped
boundary conditions by using a three-parameter perturbation method. Other applications of
multi-parameter perturbation method could be found in Nowinski and Ismail (1965). In most
cases, it is unnecessary to use multi-parameter perturbation method when the relationship of
these perturbation parameters could be established.

1.5 Limitations of the Traditional Perturbation Method

In the traditional perturbation method, the nondimensional generalized displacement, for
example, the mean square root of deflection or the mean square root of the slope, is also
taken as a small perturbation parameter instead of the nondimensional load or nondimen-
sional deflection (Hu, 1954; Chen and Guang, 1981). The comparison studies for large
deflection of clamped circular plates (Schmidt and DaDeppo, 1974; Chen and Guang, 1981;
Zheng, 1990) show that the perturbation solution derived by using the mean square root of
the slope as a perturbation parameter is better than that derived by using the nondimensional
load as a perturbation parameter, whereas the perturbation solution derived by using the cen-
tral deflection as a perturbation parameter is the best one among others. However, Hu (1954)
pointed out that the nondimensional central deflection is not a better choice for a circular
plate subjected to the combined action of uniformly distributed and concentrated loads. This
is due to the fact that, in such a case, the central deflection may be zero valued. Further,
Vol’mir (1967) reported that there exists a depression phenomenon in the central region of
the deflection curve of Chien (1954) when the plate deflection is sufficiently large. In fact,
these two weaknesses can easily be improved by using the maximum deflection instead
of the central deflection and replacing the linear solution properly or considering more terms
in the perturbation expansion series.

Generally, it is necessary to have ¢ < 1 in the traditional perturbation method. It is
worth noting that ¢ is no longer a small perturbation parameter in the large deflection
region when the plate deflection is sufficiently large, that is, W,,/h> 1, or in the deep
postbuckling region when the applied load is larger than two times the buckling load,
that is, (P-P.)/P.>1, and in such a case the solution may be invalid. Blazquez and
Picon (2010) reported that the two solutions based on the revised method of Chandra
and Raju and the method of Shen and Zhang agree well when P <2P,,, whereas a
discrepancy could be observed when P >2P,,. This is due to the fact that the revised
method of Chandra and Raju is a load-type perturbation method where [(P—P,,.)/P‘.,.]‘/2
is taken to be a small perturbation parameter, and the solution may also be invalid
when P >2P,,. Although the theoretical limitation is that ¢ < 1, the perturbation solu-
tion of Chien is adequate for the large deflection region, even if ¢ = W./h reaches 4,
when compared with experimental results. It seems reasonable to conclude that the per-
turbation method can be used for solving stronger nonlinear problems virtually.
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In order to satisfy the condition ¢ < 1, the small perturbation parameter was assumed to be
& = h/a in the large amplitude vibration analysis of the plate (Bhimaraddi, 1989, 1992,
1993), or was assumed to be ¢ = W/R in the large amplitude vibration analysis of the shell
(Chen and Babcock, 1975), where R is the mean radius of the shell.

In order to overcome the weakness of the traditional perturbation method in the nonlinear
analysis of elastic structures, Shen and Zhang (1988) proposed a two-step perturbation
method. This approach gives explicit analytical expressions of all the variables in the post-
buckling range. In contrast to the traditional perturbation scheme, this method avoids the
paradox by a two-step perturbation scheme. In the first step ¢ may have no physical meaning,
but is definitely a small perturbation parameter. In the second step (A(['l) ¢) is taken as the
second perturbation parameter relating to the nondimensional maximum deflection that may
be large in the large deflection region or in the deep postbuckling region, where A&],) is the
amplitude of the first term in the perturbation expansion of the plate deflection. This
approach is successfully used in solving many nonlinear bending, postbuckling and non-
linear vibration problems of beams, plates and shells. This approach is now called the
“Method of Shen and Zhang” by Blazquez and Picon (2010). This approach may find more
extensive applications in the nonlinear analysis of nanoscale structures (Shen, 2010a, b,
2011; Shen et al., 2010, 2011; Shen and Zhang, 2006, 2007, 2010a, b).
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