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To the memory of Giovanni

During the first two weeks of June 1996, the four authors of this book were
together in Copenhagen to complete the work. Two weeks later, on 29 June,
Giovanni Paladin tragically died in a mountain climbing accident on Gran Sasso
near I’Aquila in Italy. This was a terrible shock, and we, and many others, feel
the incomprehensible loss of a dear colleague and close friend.

Giovanni was born in 1958 in Trieste. He received his education at the
University of Rome and wrote his Master’s thesis on the subject of ‘Dynamical
critical phenomena’ under the supervision of Luca Peliti (1981). After the thesis
he became interested in the theory of dynamical systems and chaotic phenomena,
which led to the well-known work on multifractals in collaboration with Roberto
Benzi, Giorgio Parisi and Angelo Vulpiani. He continued to develop new ideas
within this field now in a very close collaboration with Angelo Vulpiani. From
1982 they co-authored more than 60 papers, among which is a widely cited
review on multifractals and a book on products of random matrices. After
his Ph.D. at the University of Rome ‘La Sapienza’ (1987), Giovanni started his
‘travelling years’. First he went for a year to the Ecole Normale Superieure, Paris
(1987-88) and visited the University of Chicago (1988): then, finally, he spent a
year at The Niels Bohr Institute and Nordita in Copenhagen (1989-90). During
this time he established links with many groups and individuals, and he kept
returning to these places, where he was a treasured guest. While in Copenhagen,
Giovanni and Angelo (who remained in close contact) started a collaboration
on shell models for turbulence with Mogens Jensen, and this work forms an
important part of our book. In 1990 Giovanni became Assistant Professor at
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To the memory of Giovanni

the University of L’Aquila, and then in 1992 Associate Professor, again at the
University of I’Aquila.

Giovanni was a very gifted and creative scientist. He mastered the techniques
of statistical mechanics and dynamical systems to perfection and was able to
draw analogies between the various subjects he worked on in a very elegant and
productive way. Beyond his technical contributions in research he was also a
very good teacher, with a keen interest in the education of young scientists. Six
students prepared their Master’s thesis under his supervision and two graduate
students were working for the Ph.D. In addition Giovanni took great interest
in scientific popularization, writing some contributions for encyclopaedias and
taking part in many conferences for students and high-school teachers.

He was an extremely sweet and gentle person. Wherever he went, he made
close friends immediately and he maintained personal contacts very carefully.
One could always speak to Giovanni about anything, and he would listen and
answer in his characteristic gentle and original way, always completely honest
and deeply absorbed in science, literature, art and music (in particular, Mozart).

A funny aspect of Giovanni was his systematic absent-mindedness. He was
basically able to lose anything: keys, books, papers, files, documents, money
and so on. On the other hand he was lucky enough to find almost all the lost
objects again. Among his friends and collaborators there was a sort of unwritten
rule: it was strictly forbidden to leave the only copy of any important thing with
Giovanni.

Giovanni loved the mountains and went to ski or climb as often as he could -
almost every week. There, too, he had a large group of close friends, with whom
he shared many adventures. One of his last outings was a long tour climbing and
skiing down the volcanoes of northern Patagonia (October 1995). The practice
of mountaineering added a new dimension to the purely intellectual side of his
life, making it richer and more diverse.

All the many friends, colleagues and students of Giovanni miss him sorely.

We wish to dedicate this book to the memory of Giovanni Paladin.

Angelo, Mogens and Tomas



Preface

During the last few decades the theory of dynamical systems has experienced
extremely rapid progress. In the 1980s we became attracted to this field by
the enthusiasm and new insights generated by the works of Lorenz, Chirikov,
Hénon and Heiles, Ruelle and Takens, Feigenbaum, and Libchaber, to cite
just some of the most famous. It was surprising that concepts from low-
dimensional dynamical systems, even seemingly abstract mathematical devices
such as iterated maps, could be used to describe systems as complicated as
unsteady fluids. For fluids under severe constraints, i.e. the experiments on
Rayleigh-Bénard convection in small cells, the success was undisputed. For
the understanding of turbulence, however, the success has been more limited.
Turbulence, which implies spatial as well as temporal disorder, cannot be reduced
to a low-dimensional system, and thus a large part of the theory of dynamical
systems, in particular regarding bifurcation structures and symbolic dynamics,
is basically inapplicable.

The aim of this book is to show that there are dynamical systems that are much
simpler than the Navier—Stokes equations but that can still have turbulent states
and for which many concepts developed in the theory of dynamical systems can
be successfully applied. In this connection we advocate a broader use of the
word ‘turbulence’, to be made precise in the first chapter, which emphasizes the
common properties of a wide range of natural phenomena. Even for the case of
fully developed hydrodynamical turbulence, which contains an extreme range
of relevant length scales, it is possible, by using a limited number of ordinary
differential equations (the so-called shell models), to reproduce a surprising
variety of relevant features.



Preface

This book reflects to a large extent our own scientific interests during the
last decade or so. These interests were strongly influenced by many outstanding
colleagues. In particular we would like to express our thanks for guidance,
inspiration and encouragement to P. Bak, G. Grinstein, L. P. Kadanoff, A.
Libchaber, G. Parisi, I. Procaccia and D. Rand.

We are also deeply grateful to P. Alstrem, E. Aurell, R. Benzi, L. Biferale, G.
Boffetta, E. Bosch, O. B. Christensen, C. Conrado, A. Crisanti, P. Cvitanovic,
M. Falcioni, Y. He, J. M. Houlrik, G. Huber, C. Jayaprakash, J. Krug, R. Lima,
R. Livi, J. Lundbek Hansen, V. L'Vov, D. Mukamel, E. Ott, A. W. Pedersen, A.
Pikovsky, A. Provenzale, S. Ruffo, K. Sneppen, S. Vaienti, M. Vergassola, W. van
de Water, I. Webman, R. Zeitak and Y.-C. Zhang, who participated in obtaining
many of the results discussed in this book.

Finally we thank E. Aurell, M. Falcioni, J. Krug, Y. Pomeau, and N.
Schorghofer for valuable comments on the first draft of the manuscript.



Introduction

The traditional description of turbulence (as summarized in the monograph
by Monin and Yaglom [1971, 1975]) employs statistical methods, truncation
schemes in the form of approximate closure theories and phenomenological
models (e.g. Kolmogorov’s theories of 1941 and 1962). The complementary
point of view guiding our description of turbulence is to regard the Navier—
Stokes equations, or other partial differential equations describing turbulent
systems, as a deterministic dynamical system and to regard the turbulence as a
manifestation of deterministic chaos.

In the case of fully developed turbulence the direct simulation of the Navier—
Stokes equations is prohibitively difficult owing to the large range of relevant
length scales. It is thus important to study simplified modeis, and a large part
of this book is devoted to the introduction and investigation of such models.
We shall give an introduction to the dynamical systems approach to turbulence
and show the applicability of methods borrowed from dynamical systems to a
wide class of dynamical states in spatially extended systems, for which we shall
use the general term turbulence.

It is important to note that the dynamical mod=ls employed to describe
turbulent states are not low-dimensional. In flows with high Reynolds numbers
or in chaotic systems of large spatial extent, the number of relevant degrees of
freedom is very large, and our primary interest is to explore properties that are
well defined in the ‘thermodynamic limit’, where the system size (or Reynolds
number) becomes very large.

Some of the main concepts and characteristics of this approach to
turbulence are
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1. The use of quantifiers of chaotic dynamics, such as Lyapunov exponents,
entropies and dimensions. These concepts provide a very precise
determination of e.g. the onset of turbulence and an understanding of the
interplay between temporal chaos and spatial scales. In addition they
provide information about the propagation of information and
disturbances.

2. The use of the geometrical description of (multi)fractal objects, i.e.
concepts borrowed from the thermodynamical formalism for dynamical
systems. These concepts provide a framework for understanding subtle
statistical properties, such as intermittency, and allow detailed
comparison with experimental data.

3. Direct simulation of simplified dynamical models of turbulence, such as
shell models, coupled maps or amplitude equations. Here it is important
that we view these systems as non-linear dynamical systems in their full
complexity, for which the more traditional study of stationary and
periodic states and their stability is only the first step.

4. The fact that we deal with systems with a large number of degrees of
freedom means that many concepts from statistical mechanics, and in
particular from the theory of critical behaviour, become relevant. In fact,
our goal is to understand the ‘thermodynamic limit’ of deterministically
chaotic systems — as opposed to noisy systems (i.e. Langevin equations).

The layout of the book is as follows:

In Chapter 1 we introduce various concepts and models to be described in
detail later. After reading that chapter, the reader will know what we mean by
turbulence and what the rest of the book is about. This should allow the reader
to pick out which parts to read next.

In Chapter 2 we go through the phenomenology of fully developed hydrody-
namic turbulence, centred around the ideas of Kolmogorov. We introduce e.g.
structure functions, scale invariance and the multifractal description of turbu-
lence, and this should give a good background for the more detailed expositions
in chapters 3, 6, 8 and 9.

Chapter 3 is mainly concerned with shell models for fully developed turbu-
lence, which are introduced and treated in detail. The idea is to capture basic
ingredients, such as conservation laws and the energy cascade in 3D turbulence,
by a chaotic dynamical system with a reasonable number of equations. By study-
ing a system of around 20 coupled differential equations one can obtain results
on issues such as the scaling exponents of the structure functions, intermittency
corrections and the probability distribution of velocity gradients, in agreement
with experiments.

In Chapter 4 coupled map lattices are introduced and selected topics are
discussed in more detail. One main aim is to show that these models are



Introduction

helpful in understanding the interplay between chaos and turbulence, i.e. what
happens when a chaotic system becomes larger, and to understand the influence
of conservation laws and symmetry breaking. Spatio-temporal intermittency is
treated in detail as an example of a deterministic ‘phase transition’. and examples
are shown of how to model aspects of turbulent Rayleigh-Bénard convection.

Chapter 5 is concerned with turbulence in amplitude equations, i.e. equations
derived by expansions around an instability. It is centred around the complex
Ginzburg-Landau equation, which models a rich variety of physical, chemical
and biological systems in which a coherent periodic state exists. The main issues
are the interplay between periodic states, spirals, turbulent states and so-called
vortex—glass states, disordered states with many spirals. The chapter ends with a
discussion of the Kuramoto—Sivashinsky equation and generalizations thereof.

In Chapter 6 we discuss predictability in systems with many degrees of
freedom. In chaotic systems the distance between two initially close trajectories
diverges exponentially, which implies that prediction is feasible only up to a
predictability time inversely proportional to the maximum Lyapunov exponent.
This simple scenario fails in realistic situations, where many characteristic times
are involved, especially if non-infinitesimal perturbations are applied. A relevant
example is weather forecasting, where we focus on the prediction of the large-
scale motion.

Chapter 7 deals with the dynamics of interfaces and surfaces. Here we are
mostly dealing with noise-driven dynamical systems, which generate rough,
scale-invariant fronts modelling e.g. the motion of a viscous fluid in a porous
medium. Other fronts (e.g. flame fronts) can be modelled by deterministic
equations, notably the Kuramoto-Sivashinsky equation, and one important
issue is in what sense the deterministic and the noise-driven systems are alike.
A large part of the chapter is devoted to ‘extremal’ models with non-local
interactions, relevant for strongly pinned systems. The relation to self-organized
criticality and to directed percolation is discussed in detail.

Lagrangian chaos is the subject of Chapter 8. The motion of a fluid particle is
described by a low-dimensional dynamical system and can be chaotic even in the
absence of (Eulerian) chaos in the velocity field. This fact is of great importance
to mixing, transport and diffusion in fluids. The use of techniques of dynamical
systems allows one to determine e.g. the scaling range of the Batchelor law for
passive scalar fluctuations at small scales or the connection between variations
of the effective Lyapunov exponent and the strong spatial fluctuations of the
magnetic field in the dynamo problem.

This leads naturally to the problem of chaotic diffusion which is treated in
Chapter 9. The main issue is: what does the structure of the velocity field tell
us about the diffusion of fluid particles, e.g. whether it is anomalous and, if it
is normal, how to compute the diffusion coefficient. In the last part we show
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that velocity fields generated by models from chapters 5 and 7 can give rise to
anomalous diffusion.

Concepts from the theory of dynamical systems are used throughout the
book, and we assume that the reader has some familiarity with these notions.
For completeness we do, however, review some of the basic features, such as
the calculation of Lyapunov exponents and the theory of the Hopf bifurcation
in the Appendices. These also contain introductions to the theory of convective
instabilities, linear front propagation, multifractality and directed percolation.

The aim of this book is to show that concepts and techniques developed in the
context of chaotic dynamical systems play a key role in the understanding of
turbulent states in spatially extended systems. We hope that we have managed
to convey the richness and ubiquity of such turbulent states as well as the basic
features which bind them together.
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