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Preface

These notes form the contents of a Nachdiplomvorlesung given at the Forschungs-
institut fiir Mathematik of the Eidgendssische Technische Hochschule, Ziirich from
November, 1984 to February, 1985. Prof. K. Chandrasekharan and Prof. Jirgen
Moser have encouraged me to write them up for inclusion in the series, published by
Birkhauser, of notes of these courses at the ETH.

Dr. Albert Stadler produced detailed notes of the first part of this course, and very
intelligible class-room notes of the rest. Without this work of Dr. Stadler, these notes
would not have been written. While I have changed some things (such as the proof of
the Serre duality theorem, here done entirely in the spirit of Serre’s original paper), the
present notes follow Dr. Stadler’s fairly closely.

My original aim in giving the course was twofold. I wanted to present the basic theorems
about the Jacobian from Riemann’s own point of view. Given the Riemann-Roch
theorem, if Riemann’s methods are expressed in modern language, they differ very little
(if at all) from the work of modern authors.

I had hoped to follow this with some of the extensive work relating theta functions and
the geometry of algebraic curves to solutions of certain non-linear partial differential
equations (in particular KdV and KP). Time did not permit pursuing this subject, and
I have contented myself with a couple of references in §17. These references fail to cover
much other important work (especially of M. Mulase) but I have not tried to do better
because the literature is so extensive.

It is a great pleasure to express my thanks to the ETH for its hospitality, to Prof. J.
Moser for his encouragement, and to Dr. A. Stadler for the enormous amount of work
he undertook which made these notes easier to write. But special thanks are due to
Prof. K. Chandrasekharan. But for him, I would not have been at the ETH, nor would
these notes have been written without his advice and encouragement.

Chicago, August 1991 R. Narasimhan
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1. Algebraic Functions

Let F € C|z, y] be an irreducible polynomial in two variables (with complex coefficients).
We assume that its degree in y is > 1.

Recall that by the so-called Gauss lemma, if we identify C[z, y] with C[z][y], and if F is
irreducible, it is also irreducible in C(z)[y], the polynomial ring over the field of rational
functions in z. Moreover, C[z, y] is a factorial ring (i.e. a unique factorisation domain).
An algebraic function is, intuitively, “defined” by an equation F(z,y) = 0 (where F is
irreducible in C[z, y]).

To make this statement more precise, we begin with the following.

The implicit function theorem. Let f be a holomorphic function of two complex
variables z,y defined on {(z,y) € C? | |z| < 71, |yl < 72}, 1,72 > 0. Assume that

af

f(0,0) =0, 3

(0,0) 0.
Then, there exist positive numbers €,6 > 0 such that for any x € D.={z€eC | |2] < €},
there is a unique solution y(z) of the equation f(z,y) = 0 with |y(x)| < 8. The function
z +— y(x) is holomorphic on D..

Proof. Since %5(0, 0) # 0, we can choose § > 0 such that f(0,y) # 0 for 0 < |y| < 6.
Choose now & > 0 such that f(z,y) # 0 for |z| < ¢, |y| = 6 (possible since f is non-zero
on the compact set {0} x {y | |y| = 6}).
By the argument principle, if |z| < ¢,
1 of
i | 3@/ J@}d

lyl=6

is an integer n(z) equal to the number of zeros of the function y — f(z,y) in |y| < §;
by our choice of §, n(0) = 1. On the other hand, since f(z,y) # 0 for |z| < ¢, |y| = 4,
the integrand, and thus also the integral, is a continuous function of z for |z| < . Thus
n(z) = 1 for |z| < €, which means precisely that there is a unique zero y(z) of f(z,y)
with |y(z)| < 4.

That = — y(z) is holomorphic follows from the formula

1 $L(z,y)

y(z) = i ym‘ Yy
ly|=6



4 1. Algebraic Functions

(which is an immediate consequence of the residue theorem).

Let F(z,y) = ao(z)y™ + a1(z)y™ ! + - - - + an(z) € C[z, y] be an irreducible polynomial
with n > 1; the polynomials ay,...,a, € C[z] have no non-constant common factor
since F' is irreducible.

Lemma 1. Let a € C be such that ag(a) # 0 and such that there is no b € C
with F(a,b) = 0 = %—5(a, b). Then, there is ¢ > 0 and n holomorphic functions

¥1(2), ..., Yn(z) in the disc {z € C | |z — a| < €} with the following properties:

(i) yi(z) # y;(2') if i # j, |z — a] <€, |2’ — a| < &; moreover

F(z,yi(z)) =0 for |r—a|<e, i=1,...,n.

(ii) if n € C and F(z,n) =0, |z — a|] < ¢, then n = y;(z) for a unique 7 between 1
and n.

Proof. Since %%(a, b) # 0 for all solutions b of F(a,b) = 0, the polynomial F(a,y)
has exactly n roots by,...,b,. If € > 0 is small and y;(z) the holomorphic function on
|z — a| < & with y;(a) = b; and F(z,yi(z)) = 0 (which exists by the theorem above),
then the y; have property (i) if € is small enough, and property (ii) since the equation
F(z,n) = 0 has at most n solutions.

Proposition 1. Let F € Clz,y] be irreducible. There are only finitely many z € C
such that the equations

F@) = 0= 3o (@)
have a simultaneous solution y € C.

Proof. By the division algorithm, there are polynomials b; € Clz] (i > 0) with by =
ao[F = ao(z)y™ + - + an(z)] and polynomials A;, Q; € C[z,y] (j > 1) such that

. OF oF
boF=A1$+Q1, deng1<degya—y=n—-1
oF

bla—y =A2Q1+Q2, deg, Q2 <deg,Qy

bk-1Qk-2 = AkQr-1+ Q. , deg, Qi < deg, Q-1 -

We may suppose that deg, Qi = 0, i.e. that @, € C[z] (since we can otherwise continue
the division process). We claim now that Qi(z) # 0. If, in fact, Q; = 0, then from
the last of the above equations, any prime factor P of Q-1 with deg, P > 0 would
divide bx—1Qk-2, hence Qx_2 (since bx—1 € C[z] and deg, P > 0). From the equation
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br—2Qk-3 = Ar—1Qk—2 + Qk-1, it would follow that P divides b;_2Qx-3 and hence
Qk-3. Repeating this argument, P would divide all the Q; (j > 1), hence also %% and
F, contradicting the irreducibility of F. Thus Qx = Qk(z) € C[z] is # 0.

If now a,b € C and F(a,b) = 0 = %%(a, b), we see from the above equations that
Q1(a,b) =0, then that @Q2(a,d) =0,...,Qk(a,b) = Qr(a) = 0. Since Q) # 0, the set

{xreC|3yeC with F(z,y)=0= aa—g(m,y)} C {z € C| Qi(z) =0}

is finite.

Before proceeding further, we insert some toplogical preliminaries. All topological spaces
we consider will be Hausdorff.

Definition. A continuous map p: X — Y, where X, Y are locally compact (Hausdorff)
spaces, will be called proper if, for any compact set K C Y, the inverse image p~(K)
is compact in X

Lemma 2. If X,Y are locally compact, a proper map p: X — Y 1is necessarily closed,
i.e. takes closed sets in X to closed sets inY.

Proof. Let A C X be closed, and yp € Y. Let K be a compact neighbourhood of yo
in Y. Then p(4) N K = p(ANp~1(K)) is compact (since A is closed and p~!(K) is
compact), hence closed in K.

Remark. A continuous map p : X — Y between locally compact spaces X, Y is proper,
if and only if, for any locally compact topological space Z, the product

pxidz: X xZ —YxZ, (z,2) — (p(z),2)

is closed. If X,Y have countable bases, this can be seen by using the following remark:
if {x1,...,Zn,...} is a sequence of points in X, without limit points and such that
{p(zn)},., converges in Y, then the image of the closed set {(zn, ) |n > 1} in X xR
is not closed in Y x R.

The property in this remark can be used to define proper mappings between spaces

which are not locally compact.

Remark. Let p: X — Y be a proper map between locally compact spaces. Let Z C Y
be a locally compact space (with the induced topology). Then p | Y 2):p(2)-2Z
is again proper.

In fact, a compact subset of Z is a compact subset of Y.
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Lemma 3. Letc;,...,c, € C. Let w € C and suppose that w™ +cyw™ ' +---+¢, = 0.
Then

lw| < 2max e, |'*
v

(unlesscy =---=c¢c, =0).

Proof. Let ¢ = max, |c.,|l/" > 0. If z =%, we have 2" + Eclz"“l +--+ & =0, s0
that, since |c,| < ¢,

EEE RS

+ .o
1|.. < % +--+ 2%. < 1, a contradiction. Thus

|z

If |2| > 2, we would have 1 < ;7 + -+ +
|z] < 2, e |w| < 2.

Proposition 2. Let F € Clz,y|, F(z,y) = ao(z)y™ + - + an(z),a0 # 0. Let V =
{(z,y) € C? | F(z,y) = 0} and So = {z € C | ao(z) = 0}. Let 7 : V — C be the
projection (z,y) — =. Then w | 7~ 1(C — Sp) = C — Sy is proper.

Proof. Let K ¢ C — Sy be compact. Then there is § > 0 so that |ag(z)| > 6 and
la,(z)| < 3 forz € K. If (z,y) € V, z € 77} (K), we have

aa(Z) _
ao(z) -

a(2) n-1

ao(x)y

so that, by (1.8), |y| < 2max, §-2/¥. Thus 7~ !(K) is bounded. Since clearly 7~!(K) =
(K x C)NV is closed in C2?, 7~!(K) is compact.

y" + 4o

0,

Definition. Let X,Y be (Hausdorff) topological spaces and p: X — Y, a continuous
map. p is called a covering map if the following holds: Vyo € Y, there is an open
neighbourhood V of yp such that p~!(V) is a disjoint union Ujes Uj of open sets U;
with the property that p | U; is a homeomorphism onto V' Vj € J. The triple (X,Y,p)
is then called an (unramified) covering. We also say that X is a covering of Y.

An open set V C Y with the property in the definition is said to be evenly covered by
.

It follows from the definition that the cardinality of p~'(y) is a locally constant function
on Y. (With the notation in the definition, the cardinality of p~!(y) is that of JVy € V)
Thus, if Y is connected, “the number of points” in p~!(y) is independent of y € Y. The
covering is said to be finte (infinite) if the cardinality of p~!(y) is finite (infinite). p is
called an n sheeted covering if p~!(y) contains exactly n points for y € Y.

Ifp: X —>Y,p: X — T are two coverings of Y, they are said to be isomorphic if there
exists a homeomorphism ¢ : X’ — X such that poyp =p'.

Examples. 1) Let A = {z € C| |z| < 1} and A* = A — {0}. Then, if n > 1, the map
pn : A* — A* given by p,(z) = 2™ is an n-sheeted covering.
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It is a standard fact in the theory of covering spaces that any connected n-sheeted
covering of A* is isomorphic to p,.

2) p: C — C*, p(2) = €* is an infinite covering of C*.

3) Let X,Y be locally compact, let p: X — Y be a local homeomorphism (i.e. Va € X,
3 an open neighbourhood U of a such that V = p(U) is open in Y and p | Uisa
homeomorphism onto V).

Then, p is a finite covering if and only if it is proper.
Proof. If p is a finite covering, if yo € Y and V is an open neighbourhood of yo which

is evenly covered by p, then p | p~ (V) — V is clearly proper. It follows easily that p
is proper.

Conversely, let p be a proper local homeomorphism, let yo € Y and let p~(yp) =
{z1,...,zn}. Let UJ'- be an open set with z; € UJ’- and such that p | U; is a homeo-
morphism onto the open set V; = p(U]'-). Since p is proper and X — |J{ U; is closed
in X, E = p(X —J;Uj) is closed in Y. Clearly, yo ¢ E. Let V =Y — E. Then
p Y (V)CUjuU---UU., and we have V.C Vi N---NV,. If we set U; = Uinp='(V),
then p~'(V) = U7 U; and p | U; is a homeomorphism onto V.

Let F € C[z,y| be irreducible, F(z,y) = ao(z)y™ + --- + an(x). Let So = {.’L‘ e C |
ap(z) = 0} and S, = {z e C | Jy € C with F(z,y) = 0 = %%(a:,y)}. Then, if
V ={(z,y) € C?| F(z,y) =0} and 7 : V — C the projection (z,y) — z, then

g | 7|'-1(C—'(SOUS])) — C-(SpuUS))

is a finite covering (of n sheets).
This follows from Proposition 2 the implicit function theorem.
Before proceeding to show how the set V' can be modified over the points of So U S; and

the point at oo in C to define the algebraic function completely, we shall introduce the
notion of a Riemann surface and some related topics.



2. Riemann Surfaces

Let X be a 2-dimensional manifold (i.e. X is a Hausdorff space and any point in X has
a neighbourhood homeomorphic to an open set in R?).

Consider pairs (U, ¢) where U is open in X and ¢ : U — ¢(U) C C is a homeomorphism
onto an open set in C.

Two such pairs (U1, 1), (Uz, @2) are said to be (holomorphically) compatible if the map
P9 0 cpl_l : 1 (Uy NU2) = ¢a(Ur,NU2) is holomorphic; its inverse is also holomorphic
by a standard result in complex analysis.

A complex structure on X is a family S of pairs {(U, ¢)} which are pairwise compatible
and such that |JU = X; there is then a unique maximal family of pairs with these
two properties and containing S; we shall usually assume that the complex structure is
maximal. The elements (U, ¢) of this (maximal) complex structure are called charts or
coordinate neighbourhoods. In a coordinate neighbourhood, we usually identify U with
¢(U) and write z for ¢ as one does with the usual complex variable in C.

A Riemann surface is a connected 2-dimensional manifold X with a complex structure
S. We shall also assume that X has a countable base of open sets, although a theorem
of Radé asserts that this is automatic (for a proof, see e.g. [4]).

If 2 C X is open (X is a Riemann surface) and f : 2 — C is continuous, we say that
f is holomorphic if for any chart (U, ¢) of X, the function fo ™! : p(QNU) — C is
holomorphic.

If X,Y are Riemann surfaces, f : X — Y a continuous map, f is called holomorphic if,
for any chart (V,%) of Y, the function ¥ o f : f~1(V) — %(V) C C is holomorphic.

Non-constant holomorphic maps between Riemann surfaces are open. Also, a bijective
holomorphic map f : X — Y has a holomorphic inverse f~! : Y — X. Such bijective
holomorphic maps are called analytic isomorphisms (or biholomorphic maps).

Examples

1. The complex projective line = Riemann sphere. Let P' be the one-point compacti-
fication C U {00} of C. We set U; = P! — {00} = C, ¢; : U; — C being the identity;

ol _[1/z ifzeC-{0}=C"
Uz =P — {0}, ea() = {/* £2EC~

The map @2 0 ;! is the map z — 1/z of C* into itself, so that these two charts define
a complex structure on P!. This Riemann surface is called the projective line or the
Riemann sphere.
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2. Tori. Let 7 € C, Im(7) > 0. Let A = {m+n1 | m,n € Z}. A is an additive subgroup
of C. Consider the quotient group X = C/A and let 7 : C — X be the canonical
projection. With the quotient topology, X is a compact Hausdorff space, and C — X is
a local homeomorphism. [These statements are easy consequences of the following two
remarks: if a € C, and we consider the set U = {a+ A +pur | A\ u€R, —% <\p< +%},
U is open and maps bijectively onto an open set in X; further X is the image of the
compact set U (closure of U) for any a € C.  is actually a covering map.]

As charts, we use pairs (U, ¢) obtained as follows: let V be any open set in C such that
7|V is a homeomorphism onto an open set U in X; set ¢ = (n|V)"!: U = V c C.
Two such charts (Ui, 1), (Uz,¢2) are holomorphically compatible: we clearly have
7(p2 0 97 (2)) = 7(z) for z € p1(Ur N Us) thus a0 o7t (2) — 2 € A Vz € 0, (Uy NU,),
so must be constant on connected components (because ¢, o cpfl is continuous and A
is discrete).

The Riemann surfaces X constructed above are called tori or elliptic curves.

3. Surfaces of “higher genus”. Let g be an integer > 1, and let 0 < r < 1. Let
A = {z € C| |2| < 1}. There is a unique bijective holomorphic (= biholomorphic) map
T : A — A such that T(r) = re®**/29 and T(re™*/29) = re2*¥/29_ Let 0 : A — A be the
rotation z — ze2"/49,

For k € Z, we set
Ak = 04kT¢7-4k , Bk — a4k+1T0,—4k—l ,

and denote by I' the group of biholomorphic maps of A generated by Ay, Bix(Vk € Z).

A special case of a theorem enunciated by Poincaré (for the theorem and its proof, see
the elegant article by G. de Rham: Sur les polygones générateurs de groupes Fuchsiens,
L’Enseignement Mathématique, 1971, pp. 47-61) implies that there exists an r, 0 <
r < 1, such that I acts freely (without fixed points) and discontinuously on A, and
the quotient A/T" is compact. One sees that the canonical projection 7 : A — A/T
is a covering map, and obtains a complex structure on A/T for which the map = is
holomorphic as in the case of tori.

4. Let Y be a Riemann surface, X a connected 2-dimensional manifold andp: X - Y
a local homeomorphism. There is a unique complex structure on X for which the
map p is holomorphic, obtained as follows: Let U be an open set in X such that
p|U is a homeomorphism onto an open set V in Y such that V' C V; for some j,
where {(V;,%;)jes} is the given complex structure on Y. Let py : U — C be the
map gy = % op. It is easily checked that two such pairs (U,¢u), (U',pu) are
holomorphically compatible, so that one obtains a complex structure on X for which p
is holomorphic.

The uniqueness is a consequence of the following remark: let U C X be open and p|U,
a homeomorphism onto V C Y. Then, if p is holomorphic, the map (p|U)~! : V — U
is again holomorphic.



10 2. Riemann Surfaces

Consider now a Riemann surface X and a holomorphic map p : X — C which is also a
local homeomorphism. We consider C as the complement of co € P!, and p as a local
homeomorphism X — P!.

We shall define boundary points of X. Let {z,},>1 be a sequence of points in X with
the following properties:

1) {z,} is discrete (i.e. has no limit points in X);
2) {p(z.,)} converges to a point a € P!;

3) LetD.={2€C||z—a|<e}ifa€cC, andlet D, ={z€C||z| >1}u {00} if
a = 00. Then, for all sufficiently small ¢ > 0, all but finitely many of the {z,} lie
in the same connected component of p~1(D,).

Two such sequences {z,}, {y.} are called equivalent if the sequence

— T(y41)/2 for v odd
Tl Y2 for v even

again has the three properties above [i.e. limp(z,) = limp(y,) = a say, and the con-
nected components of p~!(D, ) containing all but finitely many of the r,, v, respectively
are the same].

A boundary point of X (relative to the map p) is then an equivalence class of se-
quences {Z, },>1 with the three properties given above. Set X = X U {boundary points
of X}.

Let P be a boundary point of X, defined by a sequence {z,},>1. We define neighbour-
hoods of P in X as follows. Let ¢ > 0 be small and D, = {z |Iz—al <€} (a€C)or
D, ={z ||zl > 1}U {0} (a = o), where @ = lim p(z, ). Let Q2. be the connected com-
ponent of p~1(D,) containing all but finitely many of the z,, and let . be the union
of Q¢ with those boundary points @ with the following property: if {y,},>1 defines @,
then {v | y, & Q.} is finite (this is independent of the sequence {y,} defining Q). The
Q. (¢ > 0 small) form a fundamental system of neighbourhood of P € X — X.

This topology is Hausdorff: if P,Q are boundary points defined by {z,},{y.} respec-
tively, and P # @, then, by the definition of the equivalence relation, there is ¢ > 0
such that the components €2, ;) o of p“l(D ) containing all but finitely many of the
..y, respectively are distinct, and €, an Q. 2 = 0. Moreover, p clearly extends to a
continuous map p: X — P! : (P) = a = limp(z, ).

A boundary point P of X is said to the algebraic if the following holds: let D, be a small
disc around a = p(P) and let Q be the connected component of p~!(D,) containing all
but finitely many points of a sequence defining P; then p(Q?) C D, — {a} and the map
p:Q — D, — {a} is a finite covering.

If we set Agp = {z € C | |z| < R} and A} = Ag — {0}, then there is n > 1 such that
the map p : @ — D, — {a} is isomorphic to the map p, : A},,, — D, — {a} given by
pn(z) =a+ 2" if a € C, pa(2) = 27" if a = oo (see Example 1 after Definition (1.10)).



