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QUADRUPLE-MODE STUB-LOADED RESONATOR AND
BROADBAND BPF

H.-W. Deng, Y.-J. Zhao, L. Zhang, X.-S. Zhang, and W. Zhao

College of Information Science and Technology
Nanjing University of Aeronautics and Astronautics
Nanjing, China

Abstract—Novel compact microstrip quadruple-mode stub-loaded
resonator and broadband bandpass filter (BPF) are proposed in this
letter. As a starting part of designing a quadruple-mode broadband
BPF, the initial novel triple-mode open impedance-stepped stub
loaded resonator characteristic is investigated to choose its proper
dimensions. Based on these pre-determined dimensions of the triple-
mode resonator, two identical short-circuited stubs are loaded against
the impedance-stepped open stubs in the resonator to generate a
tuned resonant mode and a transmission zero in lower stopband which
leads to a high rejection skirt. A compact broadband BPF with the
quadruple-mode resonator is simulated, fabricated and measured. The
measured results agree well with the EM simulations.

1. INTRODUCTION

Recently, compact size, wide stopband and high selectivity microwave
BPF's are widely applied to enhance the performance of radio frequency
(RF) front-ends. Resonators, as the fundamental elements in a filter,
usually determine the size of the filter. There are many ways to
reduce the resonator size, however, the important way for the filter
size reduction is to modify the traditional resonator to generate
additional modes, causing the resonator to have multiple resonate
frequencies and thus one physical resonator can be treated as multiple
electrical resonators. Examples can be seen from dual-mode ring
resonator [1], dual-mode square-ring resonator [2] and dual-mode
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multi-arc resonator [3]. The dual-mode means two degenerate resonant
modes of the aforementioned geometrically symmetrical resonators and
the two degenerate resonant modes may be split by introducing a
perturbation element in a resonator. Subsequently, the dual-mode
resonator that odd and even modes do not couple has been given
in [4]. Some triple-mode resonators [5,6] have been presented to
design BPF's with high frequency selectivity. However, the fractional
bandwidths of the BPFs are less than 5%. Recently, several BPF's
with the fractional bandwidth better than 110% are reported using the
triple-mode impedance-stepped resonators (SIR), such as stub-loaded
multiple-mode resonator (MMR) [7], EBG-embedded MMR [8], one
open stub and one short stub loaded MMR [9]. Then, a quadruple-
mode SIR by Wong and Zhu [10] is proposed to build up UWB
filter with compact size. In [11], instead of using multimode SIR, a
dual-mode resonator composed of single stub at the center plane and
two sections of transmission lines is introduced for high rejection and
wideband BPF with the fractional bandwidth 45%.

The primary objective of this work is to explore a compact high
selectivity and broadband BPF with quadruple-mode resonator. As
part of the designing quadruple-mode filter, an initial novel compact
triple-mode open impedance-stepped stub loaded resonator is firstly
constituted in Section 2. Then, two identical short-circuited stubs are
properly attached to the triple-mode resonator to form a quadruple-
mode resonator in Section 3. After the principle of the quadruple-mode
resonator is explained, the performance of the broadband BPF with
the quadruple-mode resonator is simulated and optimized by HFSS.
Finally, one broadband BPF prototype is fabricated for experimental
verification of the predicted results. The substrate is RT /Duroid 5880
with a thickness of 0.508 mm, permittivity of 2.2 and loss tangent
0.0009.

2. PROPOSED TRIPLE-MODE OPEN
IMPEDANCE-STEPPED STUB LOADED RESONATOR

As a starting part of this work, a novel resonator configured by adding
two identical impedance-stepped open stubs denoted by length (b,
l3) and width (a, w;) to a microstrip transmission line with length
of 2l + 2m and widths of w is shown in Figure 1 and at first
discussed. Since the resonator is symmetrical to the P point, Voltage
(current) basically vanishes in the T-7” plane when the wide w is very
small, leading to the approximate transmission line circuit models
represented in Figures 2(a) and (b). So the odd-even-mode method
is implemented [4], and Yinodd = 0 and Yinpeven = 0 give rise to the
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Figure 1. Schematic of the proposed triple-mode open impedance-
stepped stub loaded resonator under the couple case.
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Figure 2. (a) Odd-mode equivalent circuit, and (b) even-mode
equivalent circuit.

conditions for the odd mode resonator and even mode resonator in
Figure 2(a) and Figure 2(b) (Herein, we choose w = w; = 0.3 mm):

(tan 6, tanfs—1)(Y1 —Ya tan Oy tan 63)+Y; tanfa+Ya tanf3 = 0 (1)
(tanf;+tanfy) (Y1 —Ys tanf3 tanfy)+Ys tanf3+Y; tanf = 0 (2)

where 6, 62, 03, 64 refer to the electrical lengths of the sections
of lengths m, I3, b and [;, respectively. And Y; and Y5 refer to
characteristic admittances of the widths w and a, respectively.

We may choose the parameters of the impedance-stepped open
stub: @ = 2mm, b = 5mm, /o = 1mm, w; = 0.3mm. Under the
total parameters /; +m = 12.7 mm keeping unchanged, resonant-mode
frequencies varied m from the formulas (1) and (2) are interpreted
in Figure 3. It can be seen that there are two odd modes and one
even mode in the range of 0.1-7 GHz and the length m can adjust the
locations of three resonant modes. When the impedance-stepped open
stub moves near the center plane, it basically has no impact on the
odd mode frequency f,1. So, the f,1 is approximately determined by
the following expression:

c

fm1 = m (3)



4 Deng et al.

5
=]
T
©
3

9.0]

6.5 8.5]
_ odd mode 5 80
¥ 6.0 'm3 o i
5 G875
> 55 7 § 7.04
g 'm2 265
é. 5.01 even mode g6.0]
i 4] 4.44GHz calculated by formula (3) = 5.5
i 5.0]
4.0 4.51
——————r————— i 4.0

00 02 04 06 08 10 12 1.4 16 1.8 2

m (mm)

Figure 3. Resonant-mode fre- Figure 4. Resonant-mode fre-
quencies with varied m. quencies with varied b.

0-
-10]
20]
-304

-40];
-50]
-604
-70]
-80]
-90

S| in dB

0o 2 4 6 8 10 12
Frequency (GHz)

Figure 5. Simulated |S31| in dB of weak and tight coupling triple-
mode resonator.

where c is the speed of light and .4 is equivalent dielectric constant.

Furthermore, the specific effect of the length b on the resonant-
mode frequencies is investigated and shown in Figure 4, where m
is equal to 0.95mm. As the length b varies from 2mm to 7mm,
the resonant frequencies (fm2, fm3) tend to shift downwards and
the resonant frequency (f,,1) remains stationary. Thus, f,; can be
allocated in the lower cut-off frequency by reasonably choosing /; and
m, and the other two resonant frequencies can be adjusted within the
desired passband by simply varying the parameter b.

The triple-mode resonator coupled to 50 Q input/output interdig-
ital feeding lines under the selected coupling lengths of d = 0.3 mm
(the weak coupling case) and d = 11.5mm (the tight coupling case) (8]
is simulated by HFSS and shown in Figure 5, where b = 5mm,
g = 0.1mm, stripw=0.3mm. Under the weak coupling case, the
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first three simulated resonant-mode frequencies, f,,1 = 4.21 GHz,
fm2 = 5.27GHz and f,,3 = 5.96 GHz, can work together to make
up the desired passband. Under tight coupling case, two transmis-
sion zeros Ty; and Ty near the upper cut-off frequency are shown in
Figure 5 and separately generated by the identical impedance-stepped
open stubs and the interdigital feeding lines [7], leading to a high upper
rejection skirt. However, there is a poor rejection skirt in lower cut-off
frequency.

3. QUADRUPLE-MODE STUB-LOADED RESONATOR
AND BPF

Figure 6 illustrates the schematic of the proposed quadruple-mode
stub-loaded resonator. Two identical short-circuited stubs with length
l3 and width w; are placed against the impedance-stepped open stubs
in the triple-mode resonator. They are utilized to push the fourth
resonant mode into the desired passband [10]. The fourth resonant
frequency f,4 is approximately expressed by:

fm4 = (4)

c
4(l; + 13) [Eeff

Under the weak coupling case, the simulated |S21| in dB of the
quadruple-mode resonator for different values of I3 is interpreted in
Figure 7. It is found that the resonant frequencies fi,1, fm2 and f,3 are
less affected by I3, when it is changed from 1 to 3 mm. Hence, the fourth
resonant frequency (fn4) moves up and works together with the three
resonant frequencies (fm1, fm2, fms3) to form a novel quadruple-mode
broadband BPF under the tight coupling case. Figure 9(a) interprets
the simulated |S2;| in dB of the BPF and four resonant frequencies
are in the passband (where I3 = 3.1mm, d = 11.5mm). Compared

g=0.1mm ]I stnp W— 0.3mm
Wf‘ —F E ,l’“
o e
"

Figure 6. Schematic of the quadruple-mode stub-loaded resonator
under the couple case.
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Figure 9. Simulated and measured frequency responses of the
quadruple-mode broadband BPF. (a) |Sz;| in dB and |S11| in dB. (b)
Group delay.

to the result in Figure 5, this quadruple-mode broadband BPF has
enlarged attenuation skirt near the lower cut-off frequency attribute
to the transmission zero T3 created by the short-circuited stubs [10],
in addition to keeping its high upper rejection skirt and wide upper-
stopband performance.

After studying the characteristics of the quadruple-mode
broadband BPF, the filter is fabricated on the RT/Duroid 5880
substrate, and its photograph is shown in Figure 8. The filtering
performance is measured by Agilent network analyzer N5230A. The
measured |S11| in dB and |Ss;| in dB as well as group delay are shown
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in Figure 9 and illustrated good agreement with simulated results.
The measured 2dB passband is in the range of 2.96 to 5.81 GHz and
its measured input return loss (|S11| in dB) is less than —12.5dB. The
upper-stopband in experiment is extended up to 11.5 GHz with an
insertion loss better than —30dB. In addition, the measured in-band
group delay is varying from 0.4 to 0.9 ns, which is quite small and flat
in all the passband.

4. CONCLUSION

In this letter, a novel compact triple-mode impedance-stepped stub
loaded resonator is first studied and designed. The filter with the
resonator under the tight coupling case has high upper rejection skirt
and wide upper-stopband performance. After that, a quadruple-mode
resonator is constituted by introducing two short-circuited stubs to the
initial triple-mode resonator. Based on the resonator, a broadband
BPF with the fractional bandwidth 65% is designed to exhibit its
attractive sharp rejection skirts and wide upper-stopband. A filter
prototype is fabricated to demonstrate the predicted performances in
experiment.
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Abstract—In this letter, a compact and high selectivity broadband
bandpass filter (BPF) is proposed using the dual-mode folded-T-type
resonator and the short stub loaded parallel-coupling feed structure.
The resonator can generate one even-mode and one odd-mode in the
desired band. Two resonant frequencies can be adjusted easily to
satisfy the bandwidth of the BPF. A parallel-coupling feed structure
with a cross coupling has been applied to generate two transmission
zeros in the lower and upper stopband. Furthermore, the loaded
short stub can create two transmission zeros near the upper cut-off
frequency and in the upper stopband. Simultaneity, the transmission
zero in the lower stopband moves towards the cut-off frequency. One
filter prototype with the fractional bandwidth 57% is fabricated for
experimental verification of the predicted results. The size for the
resonator is only 0.156 A4 x0.303), in which )4 is the guided wavelength
of 502 microstrip at the center frequency.

1. INTRODUCTION

Broadband BPFs with compact size and high performance are highly
demanded in many wireless communication systems [1]. The planar
microstrip BPF has attractive features such as easier design, easier
manufacture, lower cost, smaller size and lower radiation loss. In the
past, a variety of microstrip planar broadband BPFs with improved
electrical and/or geometrical features has been investigated [2-12].
Dual-mode resonators are attractive because the number of resonators
required for a given degree of the filter is reduced by half, resulting
in a compact filter configuration [3]. As is well known, the dual-mode
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planar microstrip resonators are introduced for designing a compact
filters [3-12]. Several types of dual-mode resonators with perturbation
element have been investigated, including EBG-based resonator [4],
ring resonator (5], square-ring resonator [6], multi-arc resonators [7].
Subsequently, the dual-mode resonators whose odd- and even-modes
do not couple have been given in [8]. The open stubs can suppress
the high harmonic resonant modes; therefore, a compact BPF using
the open stub loaded dual-mode resonator in [9, 10] is presented with
wide upper stopband performance. Nevertheless, the lower stopband
suppression is as important as the higher one. A dual-mode open
loop resonator with perturbation element in [11] is applied to design a
compact filter with two transmission zeros on each side of the passband
and the filter exhibits a desirable stopband response where the first
spurious passband naturally occurs at 3fy. Furthermore, a broadband
BPF with the fractional bandwidth 45% in [12] is designed with a
dual-mode resonator composed of single stub at the center plane and
two sections of transmission lines. However, the selectivity of the filter
needs to be improved.

In this letter, a compact and high selectivity broadband BPF
with the fractional bandwidth 57%, as shown in Figure 1, is proposed
using the dual-mode folded-T-type resonator and the short stub loaded
parallel-coupling feed structure. The even-mode resonant frequency
can be flexibly controlled by the middle microstrip line, whereas the
odd-mode one is fixed. Four transmission zeros are generated near
the cut-off frequencies and in the stopband by the short stub loaded
parallel-coupling feed structure. The good agreement between the
simulated and measured results demonstrates our proposed structure.

2. DUAL-MODE BROADBAND FILTER

As shown in Figure 1, The dual-mode folded-T-type resonator formed
by two microstrip lines is very compact in size, due to the folded

Figure 1. Schematic of the dual-mode broadband filter.



