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Preface

One of the mathematical miracles of the 20th century was the discovery of a group
of nonlinear wave equations being integrable. These integrable systems are the in-
finite dimensional counterpart of the finite dimensional integrable Hamiltonian
systems of classical mechanics. Icons of integrable systems are the KdV equa-
tion, sine-Gordon equation, nonlinear Schrodinger equation etc. The beauty of
the integrable theory is reflected by the explicit formulas of nontrivial solutions to
the integrable systems. These explicit solutions bear the iconic names of soliton,
multi-soliton, breather, quasi-periodic orbit, homoclinic orbit (the focus of this
book) etc. There are several ways now available for obtaining these explicit solu-
tions: Backlund transformation, Darboux transformation, and inverse scattering
transform. The clear connection among these transforms is still an open question
although they are certainly closely related. These transformations can be regarded
as the counterpart of the canonical transformation of the finite dimensional inte-
grable Hamiltonian system. Bécklund transformation originated from a quest for
Lie’s second type invariant transformation rather than his tangent transformation.
That brings the title of this book: Lie-Béacklund-Darboux Transformations which
refer to both Bécklund transformations and Darboux transformations.

The most famous mathematical miracle of the 20th century was probably the
discovery of chaos. When the finite dimensional integrable Hamiltonian systems
are under perturbations, their regular solutions can turn into chaotic solutions.
For such near integrable systems, existence of chaos can sometimes be proved
mathematically rigorously. Following the same spirit, one may attempt to prove
the existence of chaos for near integrable nonlinear wave equations viewed as near
integrable Hamiltonian partial differential equations. This has been accomplished
as summarized in the book [69]. The key ingredients in this theory of chaos in
partial differential equations are the explicit formulas for the homoclinic orbit and
Melnikov integral. The first author’s taste is to use Darboux transformation to
obtain the homoclinic orbit and Melnikov integral. This will be the focus of the
first part of this book.

The second author’s taste is to use Darboux transformation in a diversity
of applications especially in higher spatial dimensions. The range of applications
crosses many different fields of physics. This will be the focus of the second part of
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this book. This book is a result of the second author’s several visits at University
of Missouri as a Miller scholar.

The first author would like to thank his wife Sherry and his son Brandon,
and the second author would like to thank his wife Alla and his son Valerian, for
their loving support during this work.
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Chapter 1

Introduction

The so-called Backlund transformation originated from the studies by S. Lie [80—
82] and A. V. Béacklund [11-15] on the Lie’s second question on the existence
of invariant multi-valued surface transformations [5]. Lie’s first question was on
the well-known Lie’s tangent transformations. The first example of a Béacklund
transformation was studied on the Bianchi’s geometrical construction of surfaces
of constant negative curvatures — pseudospheres [18]. The Gauss equation of a
pseudosphere can be rewritten as the sine-Gordon equation. The Backlund trans-
formation for the sine-Gordon equation is an invariant transformation with a so-
called Backlund parameter first introduced by Béacklund. The Bécklund parameter
is particularly important in Bianchi’s diagram of iterating the Béicklund transfor-
mation to generate a so-called nonlinear superposition law [18, 19]. Immediate
further studies on Bécklund transformations were conducted by J. Clairin [26] and
E. Goursat [40].

Darboux transformation was first introduced by Gaston Darboux [29] for the
nowadays well-known one-dimensional linear Schrédinger equation — a special form
of the Sturm-Liouville equations [84]. Darboux found a covariant transformation
for the eigenfunction and the potential. The covariant transformation was built
upon a particular eigenfunction at a particular value of the spectral parameter.

At the beginning, it seemed that Béicklund transformation and Darboux
transformation are irrelevant. The first link of the two came about in 1967 when
Gardner, Greene, Kruskal, and Miura related KdV equation to its Lax pair of
which the spatial part is the one-dimensional linear Schrédinger equation [38].
Soon afterwards, the Béicklund transformation for the KdV equation was found.
This was the beginning of a renaissance of Backlund transformations and Darboux
transformations. It turned out that the existence of a Lax pair for a nonlinear wave
equation, the solvability of the Cauchy problem for the nonlinear wave equation by
the inverse scattering transform [38], the existence of a Bicklund transformation
for the nonlinear wave equation, and the existence of a Darboux transformation
for the nonlinear wave equation and its Lax pair are closely related (although clear



2 1 Introduction

relation is still not known). Up to now, Bécklund transformations and Darboux
transformations for most of the nonlinear wave equations solvable by the inverse
scattering transform, have been found [84, 96]. The potential lies at utilizing
these transformations. All the earlier books [3, 5, 27, 41, 84, 91, 95, 96] focus
on using Béacklund or Darboux or inverse scattering transformation to construct
multi-soliton solutions. Such multi-soliton solutions are defined on the whole spa-
tial space with decaying boundary conditions. When the integrable system is posed
with periodic boundary conditions, the solutions are temporally quasi-periodic or
periodic or homoclinic. The first part of this book will focus on homoclinic orbit.
Chapters 3-9 contain many valuable formulas for homoclinic orbits and Melnikov
integrals. Here the Darboux transformations are not only used to generate explicit
formulas for the homoclinic orbits but also interlaced with the isospectral theory
of the corresponding Lax pairs to generate Melnikov vectors crucial for building
the Melnikov integrals. The integrable systems studied in Chapters 3-9 are the
so-called canonical systems each of which models a variety of different phenom-
ena. The formulas can be directly used by the readers to study their own near
integrable systems. In Chapter 2, we briefly summarize various methods for deriv-
ing Backlund transformations. These are all “experimental” or “trial-correction”
methods. For a more detailed account on these methods, we refer the readers to
the book [96]. There are not many methods for deriving Darboux transformations.
The commonly used one is the dressing method [84]. Sometimes Chen’s method
in Chapter 2 can be effective too. Again these are all “trial-correction” meth-
ods. Chapters 10-16 contain applications of Darboux transformations in more
specific physics problems, and various connections among different systems. Here
no specific boundary condition is posed.

The future of Lie-Backlund-Darboux transformations is very bright. Besides
the potential of their important applications and new transformations, it is pos-
sible to broaden their notion and still end up with useful transformations. This
broadening process had begun long ago, e.g. the group notion in [5], the jet bundle
in [96], and the Moutard transformation in this book. The broadened transforma-
tions even reached the Euler equations of fluids [63, 79].



Chapter 2

A Brief Account on Backlund
Transformations

Biacklund transformation is an invariant transformation that transforms one so-
lution into another of a differential equation. It usually involves partial deriva-
tives, and is easily solvable once the initial solution is given. Since J. Clairin [26],
researchers have been trying to find an effective systematic way of obtaining a
Béacklund transformation. It was not successful. The commonly employed ap-
proaches are Clairin’s method [5, 26, 96], Chen’s method [25, 91|, Hirota’s bilinear
operator approach [96], and Wahlquist-Estabrook procedure [96, 103, 104]. These
are all “trail and correction” approaches. The most common use of Bicklund
transformations is to obtain multi-soliton solutions to integrable systems. For a
detailed account, we refer the readers to [96]. Here we shall briefly go over the
above mentioned derivation methods.

2.1 A Warm-Up Approach

Take the sine-Gordon equation for example
Ugy = sinu, (2.1)

where u is a real-valued function of two variables x and y. Let us assume that
a Backlund transformation transforms w into v where v also satisfies the same
sine-Gordon equation

Ugy = SiNn v, (2.2)
and our goal is to find the Bécklund transformation. Let wt = %(u + v) and
w™ = %(u—v) [59], then wt and w™ satisfy

wf, =sinw* cosw™, wy, =cosw’ sinw”. (2.3)
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We assume that the Backlund transformation has the trial form
w, = f(w"), (2.4)
then by the second equation of (2.3). one has
frwy = cosw? sinw™. (2.5)

By substituting (2.5) into the first equation of (2.3). one has

i i " -

w sinw f . [ f .

—;f’_ (7 coswt + sin w*) + cosw <? cosw’ — sin w+> =1,
which can be satisfied if one demands

"

7 cosw® +sinwt =0, and F coswt —sinw’ = 0.
A solution of this over-determined system can be found
f=asinwt,

where a is an arbitrary constant called a Backlund parameter. (2.4) and (2.5) now
take the form

. . 1 .
w, =asinw’, w =—sinw”. (2.6)
v T g

(2.6) implies (2.3) which is equivalent to (2.1) and (2.2). (2.6) is the Backlund
transformation for sine-Gordon equation (2.1). The above approach of derivation
was developed in [59]. After experimenting with different forms of assumptions
like (2.4), one hopes to find a Béacklund transformation for a given equation.

2.2 Chen’s Method

Chen’s method [25] is a quite efficient method. Take the KdV equation for example,
up + 6uty + Uyppr = 0,

its Lax Pair is given by
Ll‘r/} = /\1/)7 8t w = Ad)s
where

L=8+u, A= —40f — 3(udy + Ozu).
Let v =1, /1, one gets
vz +vi4u=), (2.7)
—v = pre + 120000 + 120%0, + 121)3 (2.8)
+ 6uzv 4+ 6uvy + 3ugs.
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Eliminating u, one finds that v satisfies the modified KdV equation
vr — 6v2vg + 6AVz + Vpzr = 0.

Relation (2.7) is the Miura transformation between KdV and modified KdV. If v
solves the modified KdV, so does —v, then one can find @ by solving KdV such
that
—vp + V24 a= ), (2.9)
Ve = — Qpgy + 12005, — 12070, + 1207 (2.10)
— 6l — 6TV, + 3lgy.
Subtracting (2.9) from (2.7), one gets v, = %(ft —u). Let w, = %u and W, = %ﬂ,
then from (2.7) and (2.8), one gets the Béacklund transformation for KdV equation
(04 w)y = X — (0 — w)?,
(w— ) = 4(t — W) gze + 12(10 — w) (W — W) 2x
+ 12( — w)? (0 — w), + 12(d — w)?
+ 12(0 — W)Wz + 12w, (0 — W)y + 6wers,

where A is the Backlund parameter.

2.3 Clairin’s Method

Clairin’s method is a direct trial method which involves tedious calculations. In
general, let u = u(t,z) satisfy some equations, and let v = v(¢,2) be another
variable linked to u through a transformation of the form

Uy = flu,v,vp,0),  wp = glu, v, v, v4).

The compatibility condition
ft =9z,

hopefully can lead to an equation for v, of course, by virtue of the equation satisfied
by u. Consider the focusing cubic nonlinear Schrodinger equation

it + quz + la|*q = 0,
Lamb started with a transformation of the form [55]

4z = f(4,4,p, P Pz Pa),
Qt = g(q*(i’p‘,ﬁ\pl’l_);t«ptﬁﬁt)'
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After some lengthy calculation, Lamb obtained the Bécklund transformation [55],
1. )
Gz = pr — Z1wE + kv,
2
1 1.
Qe =Pt + 58wz —kC + Z““(|w|2 + o),

where
€=+i(b—2wHY2, w=q+p,
1
v=4q—Dp, CZ —5iU7§+’ik‘U,

b and k are arbitrary real constants called Backlund parameters, and p and ¢
satisfy the same equation.

2.4 Hirota’s Bilinear Operator Method

Hirota [45, 46] introduced certain bilinear operators to convert the nonlinear wave
equations into bilinear equations for which Backlund transformations can be con-
structed. The Hirota bilinear operators D; and D, act according to

Dy'Dyfog= (0 — )™ (0 — 02)" f(t,2)g(t, &) |t =0
Consider the KdV equation
Up + 6ulz + Uzze = 0,

by setting u = 2(In f);z, one obtains

1
w4 6utly + Upry = O FD,(Dt +D3fof].

Thus, if f solves the associated bilinear equation
Do(Dy+ D3)f o f =0,

then u solves the KdV equation. A Bécklund transformation for the bilinear
equation can be obtained as [46]

(D2 - B)fof=0, (D;+33D,+D*fof=0,

where 3 is the Backlund parameter.
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2.5 Wahlquist-Estabrook Procedure

Wahlquist-Estabrook Procedure [103, 104] offers a relatively more systematic ap-
proach than that of Clairin [96]. Consider the equation (which is essentially the
stationary 2D Euler equation) [58]

Au = f(u), (2.11)

where A = 02 + 812,, and f is an arbitrary function. Let M = R? (with coordinates
z,y), N = R! (with coordinate u), N’ = R! (with coordinate v), w denote the
volume form on M, w = dx A dy, and 6 denote the contact 1-form on the 1-jet
JYM,N), 0 = du — upde — uy,dy. The exterior differential system of 2-forms on
JY(M, N) associated with (2.11) is generated by

o = du; Ndy — duy A dz — f(u)w,
m = du N dy — uzdx A dy,
N2 = du A dx + uydx A dy.

We seek the following form of Bécklund transformations for equation (2.11),
vz = P2 (U, Uz, Uy, v), (2 =,y).
The Wahlquist-Estabrook procedure [96, 103, 104] requires that
dpe Ndx + dipy Ndy = fim + fane + go + EAC,

where fi1, fa, and g are arbitrary functions on J'(M, N) x J°(M,N"), ¢ = dv —
Yodr —hydy, and & is a 1-form on J*(M, N) x J°(M, N'). Solving this equation,

one finds that if f satisfies [58, 98]
Lf
du?

= AL

for an arbitrary constant A, then there is a Bicklund transformation, and u and v
satisfy the same equation.






Chapter 3

Nonlinear Schrodinger Equation

In the late 19th century, G. Darboux [29] introduced a type of transformations, now
called the Darboux transformations, for Sturm-Liouville systems. The Darboux
transformation is a covariant transformation which transforms the solution and
the coefficient (potential) simultaneously.

For soliton systems, the corresponding Darboux transformation involves both
the evolution equation and its Lax pair. In this context, a Darboux transformation
is another form of the Lie-Backlund-Darboux transformation. Like the Béacklund
transformations, the derivation method for Darboux transformations is often of
“experimental” nature. The popular ones include the “dressing method” [84] and
the Chen’s method [25]. As shown in the previous chapter, the main applica-
tion of a Bicklund transformation is at generating multisoliton solutions. Besides
generating multisoliton solutions, a Darboux transformation has another novel
application—generating homoclinic (heteroclinic) orbits. This new application
was not heavily publicized. Its importance is obvious. Homoclinic (heteroclinic)
orbits are the fertile ground of chaos when the system is under perturbations
[60-62, 66-72, 75-78]. These homoclinic (heteroclinic) orbits form a figure eight
structure also called a separatrix.

We take the focusing nonlinear Schrodinger equation (NLS) as our first ex-
ample to show how to construct figure eight structures [70, 76]. If one starts from
the conservation laws of the NLS, it turns out that it is very difficult to get the
separatrices. On the contrary, starting from the Darboux transformation to be
presented, one can find the separatrices rather easily.

3.1 Physical Background

The term “nonlinear Schrédinger equation” of course comes from the well-known
(linear) Schrodinger equation of quantum mechanics. Folklore says that it was
artificially written down at first and then discovered in many physical applications.



