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ABSTRACT

Some basic three-dimensional (3D) problems in fracture mechanics are discussed in this paper.
Firstly, the interaction between the stress-strain fields and the out-of-plane constraint is analyzed.
The weaker singularities of stresses at the crack border in both linear elastic and elastic-plastic
materials are shown to be confined to an infinite small zone at the intersection point of the crack
front line and the free surface of the cracked body. Therefore, the K-based linear elastic fracture
mechanics theory and J-based nonlinear fracture mechanics theory can be extended to 3D cracked
bodies. The influence of the out-of-plane constraint factor 7z on the crack tip fields was analyzed
and the variations of some important fracture parameters from plane stress to plane strain state are
summarized. Then, in consideration the influences of both the in-plane and out-of-plane constraints,
e a general J-Or-7z or J-A,-Tz theory is proposed and proven to be more effective. Finally, the 3D
B effect on fracture of engineering materials is outlined.

1. FUNDAMENTAL EQUATIONS

For a 3D isotropic continuum without body force, the stress tensor o and strain tensor & should
g | satisfy the equilibrium and compatibility equations

¥ —
o 0, e.uey€uu=0. M

Where e,-jk=(i—j)(j-k)(k—i)/2.
In the frame of deformation theory we have
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. 3 1+Uep l—ot,,,
€, =¢, t€; = E S, + E G0,

s

where £ 1s the Young's module, £ is secant module, v, is the elastic plastic Poisson's ratio i3

1 (1 jE\_
v, =——-|--v|—
) 2 E

Consider a sheet element in the normal plane of the crack front line at any point P on the liﬁlg ;
in plane strains can be get from (2) and (3) as :

£, = EL[(I - UEPTZ)O'” — uup(l + Tz)aga],
Fog = EL[(I - uepTz>0'eg -v,,(1+ Tz)o‘,,],
‘ Egp = EL(I'*'Ura)O-ra

And the out-of-plane strain can be written as

B = (Tz ~ Uup)(o-,, +0 ) .

LR
E\'
At the tip of an open mode crack. (cr,, + 0'90) >0, €.<0 and o_. 20,sothat

0<Tz< o, s%.

When the Ramberg—Osgood constitutive relationship is assumed,

I (1 |
2\ +a(o:, /0'0)

3
g

When the Maxwell stress functions @;; (i=1,2,3) are introduced, the stress tensor satisfyin
the equilibrium equation (1) can be expressed as A

:
:

Gm" = em/q e"lj¢ﬂ_k1_ (8

-
e

2. CORNER SINGULARITY OF 3D ELASTIC CRACKS

It has been shown by previous work that the near tip stresses can be expressed in form Oﬂ-.

!

variable separation for 2D cracks and in the interior of a 3D cracked body: £

X

T = Z Akri‘fu(k)(e)’ Ay = Z;"‘ L. (9)
k=1 . :
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At corner points where the crack front intersected with the free surfaces, weaker singularity
s found in spherical coordinate (p,@,y):

>

o,=4p"5e.w), A<1/2. (10)
o the dominate term of the Maxwell functions for general 3D cracks can be assumed as
6, = r"(:)al (9, Tz) , Tz=Tz(r,0,2) (11)

~ Substituting (11) into the compatibility equation (1) and using (6) it can be gotten finally that:

8Tz : o : I
i) When ?— < 0, the stress singularity is the same as in (9), oris r 2.
z

|
. 0Tz =~ . : . .
ii) When —— — o, r ? singularity can not be determined. So only in this case a weaker
oz .

_singularity may exist.
For through-cracks in plates with thickness of 2/ under tension, 7z satisfying the equilibrium
and boundary conditions can be expressed as

18 2
3 F(r/h). (12)

. z=v|1-

p
}

Then by means of variational method. it can be found that the only stationary value of the
complementary energy is g(r)—> at the tip of the crack. So that

z

z=u{l—
h

: _ . o Oz ol e
or the 7z-z curve tends to a rectangle as »—0 (Fig.1). The region in which —= — o is infinite

}, r—0. (13)

-

1§

small, so is the possible weaker singularity region.

ATZ
; I
D

)

(s

wroang s

11
[ A\
-1 0 \fzﬁr II I

Fig.1 Through thickness variation of 7z (5 -0 & p—>0 as r— 0)



196 Fracture and Strength of Solids

3.3D ELASTOPLASTIC CRACK BORDER FIELDS

3.1 Singular Structure of the Fields
Under 3D condition, the dominate term of the crack border stresses can be assumed as

o =r "'(")6',/ (6,Tz), Tz=Tr.6,2) (14)

U

By using the basic equations of the problem as well as the properties of 7z, it can be found that:

A

1) Providing —

<o, the singularity and angular distribution of stresses and strains are
0z :

functions of the triaxial stress constraint 7z, that is

&= K8, (0.2, o

U}

aK'r'%,(6,Tz), (i,j=12) (15)

\

and

c.=TKr'?(G,+5,) &.= (Tz—%) KN _(8,1%) 16)°

The traverse shear stresses and strains are one order lower as r—0.In this case the problem can be
simplified to a quasi-planar problem with 7z being considered. This makes it possible to solve the
problem analytically.

0Tz

i1) In the case of — oo, singular structure of the fields can not be settled. It is similar to the

&

corner problem in 3D elastic cracks. Again, this region will be infinite small and not important in
application.

3.2 Asymptotic Solution Under Triaxial Stress Constraint

-~

In the case of <0, all of the singular stresses in a 3D cracked body bear relation to only

A

Oz
one stress function ¢;;, and it can be get from (14) that

#5, = Kr'g(6,T2). a7

where f{z) is a function of 7z.

Substituting (17) into (8),(2) and (1), the governing equation in a strain hardening material can
be obtained under given 7z
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o {al[a:-'(f%asa-')]—[e:-'(fzm')]"}Jr 5.7(r #+97)]

)

(138)
+a, (5’0"_15') + n(f — 2)[51,"_' (aﬁ + 5")

where ()= 5" a; are functions of fand .
0

P For a stress free mode I crack in homogeneous continuum, the problem can be summarized as
4% a two point boundary problem of (18) with

W)= 3(m)=7"(0)=7(0) = 0. (19)

Solution of (18) and (19) shows that both the exponent of singularity f and angular distributions of
the fields change with 7z. (f-2) is highest at 7z=0 and 0.5 and agrees with 2D HRR solution, but
when 0<Tz<0.5, the singularity- becomes weaker and Rice's line energy integral J will no longer be
path independent. The amplitude coefficient X is related to J by

J = ag,0, K r WA (n, T2) . 20)

Substituting (20) into (15) leads to

J l/(n+l)
= o (0.Tz),
% |ia£0crul(n, T:)r} 5,(6.T2)

= J ni(n+1) (21)
J ~

= 8, 1z).

175 a{a&,ool(n, Tz)ril %, (6.72)

i

b 3.3 Distribution of 77 in Front of 3D Cracks

gt -

‘x In front of a mode I through-crack in finite thick plate, Tz can be predicted very well by the
& following expression (where & =r/2h)

“é -230.945‘“” 2

§ Tz =v,,(1-1218£" -0359¢ +0361£™) b (22)
ER _ &“

Substituting (22) into (21), 3D stress and strain fields near the tip of a real crack can be predicted.

e

E: 3.4 Effect of 3D Constraint on Interface Crack Tip Fields

& From (22) and (3) it can be seen that 7z will change with materials. Then in the case of crack
% on the interface of two different materials. crack tip fields may be affected by the change of 7z from

por &y

one material to another.

Our investigation on the near tip fields of cracks lying on the interface of two strain hardening
Mmaterials under 3D stress constraints has shown strong effects of 7z on the continuities and
singularities of the radial and equivalent stresses.

| AR S T
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4. J-A,-T; THEORY

4.1 Out-of-plane and In-plane Constraint of Plane Strain Cracks

In plane strain state, € __=0. So from (5) and (7) it can be get that

n-1

1 (1 )1[6)
Tz=v,=~-|>- 0 23

=3 7 o, @3

3
Therefore, the in-plane stress-strain fields are coupled with 7z. This coupling relation is hard to be . 3
revealed properly by the asymptotic solutions. Based on the higher order solution which can match -2
the in-plane constraint very well and the above analysis we propose the following J-4,-Tz theory g
# s 0 5, (6
o, =|—" c + A,|r2oc \0)+ 4,r2c (0)}, (,j=12
=l [ m@r a0 45,0} (-12) |
Oy =Te(oy +04), (Tz=v,) 4)
!
g, = [(1 ~Tz+T7° )(of, +07, ) - (1 -2Tz- 2T:3)0”0'22 - 30',22]2. :
When a J-O representation is used to replace the J-4, solution in (24), a J-Q,-Tz theory can be
obtained.
4.2 J-A»-Tz Theory for General 3D Cracks =

For general three-dimensional cracks. the constraints consist of the in-plane constraint as well
as the out-of-plane constraint.

i) Out-of-plane constraint

The out-of-plane constraint is defined as the stress constraint out of the plane of the sheet
element in consideration. It can be represented by 7z. For general 3D cracks the real distribution of
Tz of the cracked body should be used. For through-thick cracks, 7z is given by eq.(22).

ii) In-plane constraint

In-plane constraint is defined as the constraint caused by the boundary conditions of the sheet
element. The J-Q representation or higher order solutions can be used to match the in-plane stresses
for various in-plane constraints.

Considering both of the in-plane and out-of-plane constraints, a J—A;—Tz or J-QO,-Tz theory can
also be proposed for general 3D crack problems:

1) In-plane stresses ¢ ij (iy=1.2): described by J-4, or J-Q theory.
i1) The equivalent stress ¢, and ¢ _: determined by eq.(22) and the last two equations of (24).

1i1) Strain field and other parameters should be calculated on the basis of i) and ii).

Acknowledgment: This work is supported by the National Distinguished Young Scientist Fund of
China and the Cheung Kong Scholars Programme. Limited by the space the references are not listed,
gratitude is given to the contributors in this field.
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ABSTRACT

The relationship of notch fields and crack fields is concemed in this paper. Based on
theoretical studies and 3D numerical simulations, some common features of the 3D elastic-plastic
notch fields and the crack fields are analyzed and the unified description of the fields is discussed. It
is surprising to find that the 3D stress constraints at a circular hole, a notch and a crack can be
described uniformly. Fracture of notches is discussed and some interesting topics’in this direction
are listed to unify fatigue mechanics and fracture mechanics.

1. INTRODUCTION

Both notches and cracks are stress raisers in structures. They have the same importance in
strength analysis and safe design. For sharp cracks, the fracture mechanics method of stress-strain
analyses has been shown to be effective and successful. However, the stress-strain fields at notches
with blunt ends are much more complicated and difficult to deal with. Even for two-dimensional
(2D) notch problems, there is no rational description available for the elastic-plastic fields near the
notch-root. In the three-dimensional (3D) frame, the additional scale of the finite notch-root radius
will introduce several mechanics parameters which are necessary to be considered in stress analyses,
such as the ratio of root radius to thickness, root radius to the size of the plastic zone, efc. On the
other hand, notches and cracks have many common features. Physically, there is no ideally sharp
crack. When the depth to root radius ratio and the size of interesting region to the radius ratio
become larger, the effect of the notch-root radius become less important and a notch can be treated
as a crack. Another typical case is circular holes for which 2D as well as 3D elastic theoretical
solutions can be found in the literatures.

As shown by Fig.1, the geometrical variation from a hole to a notch and to a crack is a
continuous process so that there is no determined distinction between notches and cracks. In the
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figure, p is the notch-root radius, a is the notch depth, B is the thickness of a plate.

It is well known that the elastic solution of a 2D crack can be obtained by the solution Ofa
elliptical hole as p/a is approaching zero. The Creager and Paris solution [1] and the recent work b‘;’i
Kuang [2] and Lazzarin and Tovo [3] have built a relation between the 2D notch-root and crack.u
elastic stress fields. The elastic solution for a circular hole in a finite thickness plate has begﬁ
obtained by Chang and Guo [4]. For general notches in finite thickness plates, the in-plane str'égs“f:
distributions are insensitive to the notch radius to thickness ratio p/B [5] while the str'ég
concentration factor X, is a function of p/B and changes through the thickness. In elastic- plaSthg
situation, theoretical solutions can only be obtained for 2D circular holes under specific loadm
conditions [6] and sharp cracks. The 3D fields and the elastic-plastic deformation near general‘
notches which are more interesting in engineering are poorly understood, thus it will be the focus of?
the following discussions. ;

¥

NOtCh Deep notch Sharp Crack
Circular 4__ ) <L
hole o p—0
Blunt crack

h

pla decreasing :

,,,,,,

Elliptical — .

hole

Fig.1. The geometrical relationship between notches and cracks

2. ELASTIC STRESS ANALYSIS

2.1. A Unified Description of Notch and Crack Tip Fields

When the stress solution is formulated for a general notch, the stress function expressed in van'ablé
separated form of r and 6, '

Q= APy (0)+ ) A,rM G, (0) ¢
k=1

should satisfy the governing equation of the problem,

Ve +—1—ckk” =0. @
l+v ™

Ui

Where the second and higher terms in (1) are the solution for a sharp crack or a sharp V-notct
which can be solved easily by the fracture theory, the first term represents the influence of blun
notch-root and u<1;<1,<.... Once the terms for a sharp crack or V-notch are obtained by solving
the standard two-point boundary value problem, the first term can not be solved accurately along th

wy ‘=2 MR

,®,"" can be solved accurately or

-

notch boundary, as shown in [3], but #Z and @, @,', 9,", @,
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" the line of 6=0 by the boundary conditions at the notch-root and eq.(2) [7]. Thus the stress solution
“for a deep blunt notch can be written as

= + a
G, = Aor cl/ ' [Gl/]\/,u,,, (-’)

: and Hui & Ruina for a small hole at the crack tip [8] is only a specific value under certain in-plane
" constraint. For example, p is a function of the T-stress for a blunt crack as shown in Fig.2 where W
is the width of the plate.

Notch and Blunt crack

Central U-notch alp=21, B/p=2to 40

o
o
w
3
o]

§ 2 i 2
bie. Feeil. BAEELL A0 2 ® 3D FE: V-Notch(p=90%
o - 0.25 3D FE: V-Notch(p=60%)
o o 3D FE: Blunt crack
3D FE: Sharmp crack
2. . o , = 015 On the mid-plane
& 1=0.5+0.263T-0.0603T
i
i e 0.05] .
{1 . easwmameek Cren - Rl B
§ . -0.05
i =3 2 = 0 1 2 0 02 04 0.6 0.8 1.0
ki /B

Fig.2 The effect of T-stress on the notch-root Fig.3 The out-of-plane constraint ahead of cracks
stress solution. and notches in finite thickness plates

B ST TP DA
|

2.2. 3D Constraints

; 3D finite element analyses [5] show that in front of a opening mode notch in finite thickness
1 plate, the distribution of the normalized stress 05,/ Oyymax and the in-plane stress ratio 7y=0/0;, with
r/p is nearly independent of the plate thickness and can be predicted well with the corresponding 2D
solutions. Therefore, the out-of-plane stresses become an important parameter in describing the 3D
notch-root fields. For convenience, the out-of-plane constraint factor 7-=o:+/( o+ 0;,) used by Guo
.3 [9] for 3D cracks is introduced. For elastic through-thickness cracks, 7. can be expressed
¢ approximately by

T, =v 14.79(%) i +O.113[é)+0.631[é) }f(z/B). 4)

When the origin of the coordinate r setting at the middle point of the center of the notch root
arc and the notch-root, the variation of 7, with /B in front of a blunt crack, a shallow notch and a
hole can collapse to a unified curve, as shown by Fig.3. Therefore, the solution for a circular hole or
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for a through-thickness crack can be used to estimate 75, for general notches. It can be seen from the
figure that when B/p<l, T, will remain less than T,m./4 and merit less attention in practica]
application.

3. Elastic-plastic Stress-Strain Fields

The elastic-plastic deformation near notches is much more complicated than elastic one,"!
theoretical solution can only be found for some simple notch geometry and loading configurations, ™
Recently Guo [6] obtained the solution for an equal-biaxial stressed infinite plate with a circular‘:,
hole. He found that the elastic-plastic solution of the problem can be obtained from the elastic wiik
solution by a simple replacement of variable. If the elastic solution of the equivalent strain ahead of :3
the notch is known as 3

8L‘l[
—=f(n, Q)
€

ay
.

then the corresponding elastic-plastic solution can be obtained as
Su - ., f r y
== f(r), r=rx (6)
" rp

where & is the yield strain of the material, r, is defined by f{r,0)=1 and r, is the size of the plastic
zone ahead of the notch. This is the so called Strain-Equivalent-Rule (SER).

Finite element analyses show that the SER can not only be applied to general 2D and 3D
notches, but can also be applied to short cracks. Some typical results are given in Figs.4 and 5.

1.75 8

Double-edge U-notch
Tz=0,n=10 . 7
a/W=0.35, alp=21, Blp=10
6 —u SER

3D FE (mid-plane)
. 3D FE(Free-surface)

SER
Theoretical

1.50
°

e
eq ys
/e
eq ys

1.25

1.00

notch-root

0.75 0
06 08 1.0 12 14 10 15 2.0 2.5 30 as 40

rlp

6

Fig.4. Strain distribution at a circular hole in Fig.5. Strain distribution at a deep U-notch ina 7
plane stress state finite thickness plate.

#

For long cracks the SER can not hold good, but the plastic zone size is still a useful controlling
parameter of the elastic-plastic fields.

am

P
AR AU
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4. FRACTURE CRITERIONS FOR NOTCHES AND CRACKS

It is well known that the fracture of a material element is strongly dependent on the 3D stress
state. With increasing a/p, the stress triaxiality R, which is equal to the ratio of the mean stress to
the equivalent stress will increase. For a smooth bar R, is about 3/4 and for notched bar R~1 to 2.
For sharp cracks R is about 3 on the mid-plane. Figures 6 and 7 give the simulation results by use
% of 3D finite element and a cell model [10]. It is shown clearly that both the critical fraction of void
53 volume and the Vgc are not constant and do not change monotonously with R,. For notched bar (R,
is about 1 to 2), Vgc is nearly constant as has been investigated in many experiments. However, in
- front of a crack Vgc may be much higher. For lower R, as in a smooth bar Vgc is obviously higher
than in notched bars as well. Therefore, with proper initial values of the material parameters the 3D
cell model simulation can provide us a more complete picture of fracture of notched and cracked

bodies.
0.040 8
¢,,=0.0025, £ =0.001, n=10
¢ =0.0025, f =0.001, =10 ys
ys 1]
6
0035 2 Ve, exp(3/2R )
=
>
‘O—Q —(-6 4
9
S
0.030 L]
2
€
eq
0.025 . 0
05 1.0 1.5 20 25 3.0 05 1.0 15 20 25 3.0
R R
o -3
Fig.6. Critical fraction of void volume against Fig.7. Variation of the critical strain and Vgc
stress triaxiality with stress triaxiality

5. DISCUSSIONS

Rational prediction of the life of structural components has long been the main objective of
fatigue mechanics and fracture mechanics. The traditional fatigue mechanics determines the life by
Stress-strain concentration analysis of notches and mainly concemns the crack initiation life. In
contrast, fracture mechanics is based on crack analysis and always provides the life of crack growth.
To predict the whole life of a component rationally, confusion of fatigue mechanics and fracture
mechanics is necessary. The following topics will be interesting in this direction:

1)  Mechanics behavior in the crack blunting zone in which the fracture process occurs.
ii) Unified description of 3D elastic-plastic notch fields and crack fields.
1ii) Fatigue damage mechanism of material elements at notches and cracks.

1v) Unified description of the whole process of crack initiation from material defects or pits
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