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Preface to the Imperial College Press edition.

A lot has happened in the field of condensed matter physics since
the original edition of “Green’s functions for Solid State Physicists” was
published in 1974. Nevertheless, the book has helped introduce several
generations of condensed matter physics graduate students to the very
powerful ideas of quantum many body theory and some of their ap-
plications, particularly those in the physics of itinerant magnetism and
superconductivity that have nowadays come to be called “the correlated
electron problem”.

In preparing for the reprint edition, two new chapters have been
added to the original text to provide an introduction to the recent de-
velopments in this branch of condensed matter physics. Chapter 11
focuses on the understanding of the Kondo problem which grew out of
the exact solutions developed in the mid 1970’s. The accompanying
growth of experimental work culminating in the discovery of the heavy
fermion superconductors gave substance to the idea that Coulomb re-
pulsion between electrons in a narrow band metal can actually lead to
attraction between the electrons and resulting instabilities at low tem-
peratures to either a superconducting or an antiferromagnetic state.

Then in 1986, the discovery by Bednorz and Mueller of high T,
superconductivity in the cuprate compounds provided a bombshell in
the field of correlated electron systems. For the first time it was possible
to have materials in a superconducting state at temperatures well above
that of liquid nitrogen. Nevertheless, in spite of more than 10 years of
very intensive research by physicists in many countries, the mechanism
of high T, superconductivity remains a mystery at the fundamental
level. Chapter 12 offers an introduction to some of the basic theoretical
ideas of the physics of the cuprate compounds.

Although the theoretical concepts leading to the understanding of
superconductivity, which resulted from the fundamental work of Bardeen,
Cooper and Schrieffer in the 1950’s, still provide some of the theoretical
underpinnings for high T , there are still many aspects of the properties
of these materials which do not fit in with the elementary quasiparticle
ideas of Fermi liquid theory. Consequently it has become clear that new
physical concepts need to be developed to explain these properties. A
brief introduction to the physics of one-dimensional metals is included



X

at the end of chapter 11 to serve as a basis for some of the new ideas in
the physics of two-dimensional metals which may be applicable to high
T,.. Their application in two dimensions is briefly introduced at the end
of chapter 12.

The final chapter on understanding high T, cannot be written at
this time. Nevertheless it is our hope that this reprint edition, with the
new material, will serve as an introduction and stimulus to the next
generation of condensed matter physicists who seek to work on this
challenging class of problems.

Sebastian Doniach
Stanford, California
Winter 1998



Preface

During the last 15 years the Green’s function methods of quantum field
theory have become generally recognized as a powerful mathematical
tool for studying the complex interacting systems of solid state physics.
In writing this elementary account we have tried to show the method in
action, so that—without bothering about lengthy formal preliminaries—
we use it from the start to discuss physical problems. The idea is to show
in practice how the mathematics—in the form of the analytic properties
of the Green’s function in the complex energy plane—accounts for the
physical effects (level shifts, damping, instabilities) characteristic of
interacting systems. We concentrate on general physical principles and
do not discuss experiments in detail, but we have included introductions
to topics of current research interest such as the Mott metal-insulator
transition and the singularities (x-ray, Kondo) associated with transient
perturbations in an electron gas. We hope that the reader will feel com-
pensated for any loss in generality of treatment by being kept in contact
with real problems. s

In the first three chapters the Green’s function technique is illustrated
on the exactly solvable example of the harmonic vibrating lattice. We go
on to discuss scattering by random impurities in a gas of non-interacting
fermions and show how to calculate the electrical conductivity of a
metal. We then turn to the interacting fermi gas, devoting particular
attention to magnetic instabilities. We finish with a short chapter on
superconductivity. Two appendices deal briefly with second quantization
and the fluctuation-dissipation theorem. We have also included a histori-
cal note on George Green. We have omitted several important subjects
such as classical liquids, liquid helium, critical phenomena, and the details
of the Landau theory of fermi liquids. Our choice of topics has been
determined by our tastes and interests and should not be taken as
canonical.

The book grew out of a course of intercollegiate graduate lectures
given by S.D. in the University of London. We hope that it will appeal
to beginning graduate students in theoretical solid state physics, as a first

xi



xii Preface

introduction to more comprehensive or more specialized texts, and also
to experimentalists who would like a quick, if impressionistic, view of the
subject. A basic knowledge of solid state physics and quantum mechanics,
at undergraduate honors or first-year graduate level, is assumed.

We are indebted to a number of colleagues for their interest and help-
ful comments. We are particularly grateful to Dr. W. G. Chambers for
showing us the treatment given in Appendix 1, and to the chairmen of
our departments for facilitating consultation at close quarters.

S. DONIACH
E. H. SONDHEIMER



Introduction

The Theory of Condensed Matter

The science of condensed matter (thermodynamics, hydrodynamics, etc.)
is in many ways much older than that of the atomic constituents. How-
ever, it is only in the last two or three decades that a systematic mathe-
matical formulation of the many-body problem—with the 1023 or so
degrees of freedom needed to describe a macroscopic sample—has become
developed so that the properties of the simplest classes of condensed
matter can be related back quantitatively to the properties of the con-
stituent atoms.

There are two fundamental classes of properties possessed by con-
densed matter which belong essentially to its many-body character and
do not occur for the individual constituent degrees of freedom. One is
the existence of propagation—the notion of a sound wave, the transport
of electronic charge in metals, the propagation of light in insulators; the
other is the occurrence of phase transitions by which the matter changes
its fundamental symmetry—for classical systems melting and freezing, for
quantum systems phenomena such as magnetism, superconductivity and
superfluidity. Both classes of effects involve phenomena of long range,
spreading over distances much greater than the effective range of the
basic atomic forces which mediate them.

What is the nature of the mathematical construction which links the
atomic to the condensed description of matter? Its formulation takes on
many guises, but the essential feature is that, even when the individual
atomic interactions may be treated, in some sense, as “‘weak,” the proper-
ties of the condensed system can only be treated correctly by taking
them into account in infinite order. The most elementary example of
such an infinite-order process leads to the occurrence of propagation
through the “handing on” of excitation energy from one atom to the
next. We shall see in Chaps. 1-3 that a natural formalism with which to
set up the theory of the propagation phenomenon is the Green’s function
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approach, which in a classical system reduces to the theory of correlation
functions.

For a single degree of freedom the Green’s function, or inverse differ-
ential operator, gives the amplitude of the degree of freedom at time ¢,
given its amplitude at some previous time ¢'. This may refer either to a
localized degree of freedom (e.g., a single atomic oscillator) or to a non-
localized system (e.g., the amplitude of an electron wave function at
position x at time t, given that at position x at time ¢'). The many-body
effects are then embodied in the repeated emission of Huyghens wavelets
as the electron propagates through the medium, giving rise to an infinite
series of multiply scattered waves which sums to provide the Green’s
function for an electron interacting with the medium (which may consist
of other electrons). In this way one can obtain the response of complex
interacting systems to simple forms of excitation without having to find
the full eigenvalue spectrum, a task which is generally neither practicable
nor of physical interest. The relation between the Green’s function
formalism and scattering theory will be studied in Chaps. 4 and 5.

A major simplification which occurs for homogeneous many-body
systems is that the low-lying excited states with energies near the ground
state can often be simply described in terms of the resulting propagating
modes. Because of their mode-like nature (with rather well-defined
excitation energy wy as a function of the propagation wave-vector k) the
quanta of these elementary excitations are referred to as quasiparticles.
The Green’s function approach to the theory of elementary excitations
is developed in Chaps. 1-6 through the study of a series of specific
examples drawn from solid state physics. We shall see how the Green’s
function determines the excitation spectrum through its analytic proper-
ties in the complex energy plane. We also show how the excitations pro-
duced by applied external fields can be formulated in terms of Green’s
functions, leading to general expressions for measured quantities such as
electrical conductivities and magnetic susceptibilities. An important pro-
perty of Green’s furictions is that they are related, via the fluctuation-
dissipation theorem, to time correlation functions which determine
scattering cross-sections and which also give the averages needed to
discuss properties of the ground state of the system (or, at finite tem-

perature, the thermal equilibrium state). These relationships are illustrated
a number of times in the text.
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The phase transition phenomenon can also be reached via the ele-
mentary excitation concept. For some quantum systems this may be
studied at zero temperature by seeing how an excited state, of lower
symmetry than the ground state, becomes degenerate with the ground
state as the interaction strength is increased. This ““softening” of the
excitation energy will show up as a singularity of the Green’s function at
the instability point of the system. In classical systems this singular
behavior reduces to the Ornstein-Zernike theory of the two-particle
correlation function. In Chaps. 7-10 we discuss the instability pheno-
menon in the context of the magnetic and superconducting instabilities
of the interacting electron system. We also show how, once in the state
of lower symmetry, the system acquires a new spectrum of elementary
excitations which are no longer unstable.
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Chapter 1

Lattice Dynamics in the Harmonic Approximation

We start our exploration of the Green’s function approach by con-
sidering the problem of a lattice of interacting vibrating atoms. Within
the harmonic approximation this represents perhaps the simplest type
of many-body problem. By transforming to normal-mode coordinates
the hamiltonian can be reduced to that of a set of independent
oscillators and can thus be diagonalized exactly. But such exact closed
solutions can only be obtained in quantum mechanics in exceptional
cases, and it is therefore worth studying this problem by means of a
more general formalism which can also be applied to more complicated
cases, such as the important but much more difficult problem of the
lattice dynamics of an anharmonic crystal. This is one reason for studying
the harmonic problem by means of Green’s functions. Another is that
the Green’s function approach provides a unified systematic method for
calculating various quantities of physical interest. Thus we shall see that
it gives the ground state energy of the system, or—more generally—the
free energy at non-zero temperature, from which the thermodynamic
properties such as the specific heat can be obtained.

In addition to these equilibrium properties, Green’s functions also
provide information on the excitation energies of a system. For example,
scattering processes correspond to excitations in which one particle is
added to the system, and we shall consider the scattering of thermal
neutrons by the lattice vibrations as an example of this. There is also an
important class of excitations in which the particle number is conserved;
the theory of linear responsc to an externally applied field describes
such excitations and, as we shall see in later chapters, provides expressions
for dielectric response functions, electrical conductivities and magnetic
susceptibilities in terms of appropriately defined Green’s functions.
Green’s functions thus make it possible to evaluate measurable thermo-
dynamic and transport properties by studying the response of a system
to simple perturbations. This approach is particularly important for



2 Green’s Functions for Solid State Physicists

interacting many-particle systems, where the complete set of wave
functions and energy levels is highly complex but is not in fact needed
for studying properties related to experiment.

In the first three chapters we use the harmonic lattice as an exactly
soluble example to study and compare the principal methods for
calculating Green’s functions. The physical phenomena produced by
the interaction between atoms in this case are the propagating modes—
excitation energy is handed on from one atom to the next so as to
produce traveling sound waves (quantized as phonons). We shall find
later that in more complicated cases also there exist excitations which
take the form of sets of coupled oscillators—plasmon excitations in the
case of an electron gas with Coulomb interactions (Chap. 6), and spin
waves in the case of an insulating magnet (Chap. 8). Thus the phonon
Green’s function serves also as a prototype for studying a number of
other interacting systems of interest in solid state physics.

1.1 THE GROUND STATE ENERGY

We consider the hamiltonian

H-= Z—+— > VX - X,), (1.1.1)

i#+j

which describes a simple lattice composed of N identical interacting
atoms of mass M situated at the points X; (=1, 2, ..., N). It is assumed
that the potential energy V' is a two-body potential which depends only
upon the relative positions of pairs of atoms. We write X; = R; + u;, where
R; is an undisplaced lattice point and the lattice displacement w; is
assumed to be small. In the harmonic approximation V is expanded in
powers of the u; as far as second-order terms. Since the expansion is
about the equilibrium configuration the coefficients of the linear terms
are zero, and the expansion is

H= 2M 2 ZZ 2! u® —u®) (uf —uf) Ve VAV, (1.1.2)

where u;* is a cartesian component of u;.
To separate out the interaction between different atoms we rewrite



