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Foreword

This volume is an English translation of “Cohomologie Galoisienne”. The original
edition (Springer LN5, 1964) was based on the notes, written with the help of
Michel Raynaud, of a course I gave at the College de France in 1962-1963. In
the present edition there are numerous additions and one suppression: Verdier’s
text on the duality of profinite groups. The most important addition is the
photographic reproduction of R. Steinberg’s “Regular elements of semisimple
algebraic groups”, Publ. Math. I.LH.E.S., 1965. I am very grateful to him, and to
1.H.E.S., for having authorized this reproduction.
Other additions include:

— A proof of the Golod-Shafarevich inequality (Chap. I, App. 2).

— The “résumé de cours” of my 1991-1992 lectures at the College de France on
Galois cohomology of k(T") (Chap. II, App.).

— The “résumé de cours” of my 1990-1991 lectures at the College de France
on Galois cohomology of semisimple groups, and its relation with abelian
cohomology, especially in dimension 3 (Chap. III, App. 2).

The bibliography has been extended, open questions have been updated (as
far as possible) and several exercises have been added.

In order to facilitate references, the numbering of propositions, lemmas and
theorems has been kept as in the original 1964 text.

Jean-Pierre Serre
Harvard, Fall 1996
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Chapter 1

Cohomology of profinite groups






§1. Profinite groups

1.1 Definition

A topological group which is the projective limit of finite groups, each given the
discrete topology, is called a profinite group. Such a group is compact and totally
disconnected.

Conversely:

Proposition 0. A compact totally disconnected topological group is profinite.

Let G be such a group. Since G is totally disconnected and locally compact, the
open subgroups of G form a base of neighbourhoods of 1, cf. e.g. Bourbaki TG
111, §4, n°6. Such a subgroup U has finite index in G since G is compact; hence its
conjugates gUg™! (g € G) are finite in number and their intersection V is both
normal and open in G. Such V’s are thus a base of neighbourhoods of 1; the map
G — lim G/V is injective, continuous, and its image is dense; a compactness
argument then shows that it is an isomorphism. Hence G is profinite.

The profinite groups form a category (the morphisms being continuous ho-
momorphisms) in which infinite products and projective limits exist.

Ezamples.

1) Let L/K be a Galois extension of commutative fields. The Galois group
Gal(L/K) of this extension is, by construction, the projective limit of the Galois
groups Gal(L;/K) of the finite Galois extensions L;/K which are contained in
L/K; thus it is a profinite group.

2) A compact analytic group over the p-adic field Q, is profinite, when

viewed as a topological group. In particular, SL,(Z,), Spy,(Z,), . . . are profinite
groups.

3) Let G be a discrete topological group, and let G be the projective limit of
the finite quotients of G. The group G is called the profinite group associated to
G, it is the separated completion of G for the topology defined by the subgroups

of G which are of finite index; the kernel of G — G is the intersection of all
subgroups of finite index in G.

4) If M is a torsion abelian group, its dual M* = Hom(M, Q/Z), given the
topology of pointwise convergence, is a commutative profinite group. Thus one
obtains the anti-equivalence (Pontryagin duality):

torsion abelian groups <= commutative profinite groups
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Ezercises.

1) Show that a torsion-free commutative profinite group is isomorphic to a
product (in general, an infinite one) of the groups Z,. [Use Pontryagin duality
to reduce this to the theorem which says that every divisible abelian group is a
direct sum of groups isomorphic to Q or to some Q,/Z,, cf. Bourbaki A VIL.53,
Exerc. 3.]

2) Let G = SL,(Z), and let f be the canonical homomorphism
G — [ SLa(Z,).
P

(a) Show that f is surjective.
(b) Show the equivalence of the following two properties:
(by) f is an isomorphism;
(b2) Each subgroup of finite index in SL,(Z) is a congruence subgroup.
[These properties are known to be true for n # 2 and false for n = 2.

1.2 Subgroups
Every closed subgroup H of a profinite group G is profinite. Moreover, the ho-
mogeneous space G/H is compact and totally disconnected.

Proposition 1. If H and K are two closed subgroups of the profinite group G,
with H D K, there exists a continuous section s: G/H — G/K.

(By “section” one means a map s : G/H — G/K whose composition with
the projection G/K — G/H is the identity.)

We use two lemmas:

Lemma 1. Let G be a compact group G, and let (S;) be a decreasing filtration
of G by closed subgroups. Let S = (\Si. The canonical map

G/S — lim G/S;
is a homeomorphism.

Indeed, this map is injective, and its image is dense; since the source space is
compact, the lemma follows. (One could also invoke Bourbaki, TG II1.59, cor. 3
to prop. 1.)

Lemma 2. Proposition 1 holds if H/K is finite. If, moreover, H and K are
normal in G, the extension

1—H/K— G/K—G/H—1
splits (cf. §3.4) over an open subgroup of G/H.
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Let U be an open normal subgroup of G such that U N H C K. The re-
striction of the projection G/K — G/H to the image of U is injective (and is a
homomorphism whenever H and K are normal). Its inverse map is therefore a
section over the image of U (which is open); one extends it to a section over the
whole of G/H by translation.

Let us now prove prop. 1. One may assume K = 1. Let X be the set of
pairs (S, s), where S is a closed subgroup of H and s is a continuous section
G/H — G/S. One gives X an ordering by saying that (S, s) > (§',s) if S C 5
and if &' is the composition of s and G/S — G/S'. If (S, s;) is a totally ordered
family of elements of X, and if § = (| S;, one has G/S = lim G/S; by Lemma
1; the s; thus define a continuous section s : G/H — G/S; one has (S,s) € X.
This shows that X is an inductively ordered set. By Zorn’s Lemma, X contains
a maximal element (S, s). Let us show that S = 1, which will complete the proof.
If S were distinct from 1, then there would exist an open subgroup U of G such
that SNU # S. Applying Lemma 2 to the triplet (G, S, SNU), one would get a
continuous section G/S — G/(SNU), and composing this with s : G/H — G/S,
would give a continuous section G/H — G/(SNU), in contradiction to the fact
that (S, s) is maximal.

FEzercises.

1) Let G be a profinite group acting continuously on a totally disconnected

compact space X. Assume that G acts freely, i.e., that the stabilizer of each

element of X is equal to 1. Show that there is a continuous section X/G — X.
[same proof as for prop. 1.]

2) Let H be a closed subgroup of a profinite group G. Show that there exists
a closed subgroup G’ of G such that G = H - G’, which is minimal for this
property.

1.3 Indices

A supernatural number is a formal product []p™», where p runs over the set of

prime numbers, and where n, is an integer > 0 or +00. One defines the product
in the obvious way, and also the gcd and lem of any family of supernatural
numbers.

Let G be a profinite group, and let H be a closed subgroup of G. The indez
(G : H) of H in G is defined as the lem of the indices (G/U : H/(HNU)), where
U runs over the set of open normal subgroups of G. It is also the lem of the
indices (G : V) for open V containing H.
Proposition 2. (i) If K C H C G are profinite groups, one has

(G:K)=(G:H)-(H:K) .

(if) If (H;) is a decreasing filtration of closed subgroups of G, and if H =

(\ H;, one has (G : H) =lem (G : Hy).

(iii) In order that H be open in G, it is necessary and sufficient that (G : H)
be a natural number (i.e., an element of N).
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Let us show (i): if U is an open normal subgroup of G, set Gy = G/U,
Hy = H/(HNU), Ky = K/(KNU). One has Gy D Hy D Ky, from which

(GU : Ku) = (GU : Hu) . (HU : Ku) .

By definition, lem(Gy : Ky) = (G : K) and lem(Gy : Hy) = (G : H). On the
other hand, the H N U are cofinal with the set of normal open subgroups of H;
it follows that lem(Hy : Ky) = (H : K), and from this follows (i).

The other two assertions (ii) and (iii) are obvious.

Note that, in particular, one may speak of the order (G : 1) of a profinite
group G.

Exercises.

1) Let G be a profinite group, and let n be an integer # 0. Show the equiva-
lence of the following properties:

(a) n is prime to the order of G.

(b) The map z — z™ of G to G is surjective.

(b’) The map = — z™ of G to G is bijective.

2) Let G be a profinite group. Show the equivalence of the three following
properties:

(a) The topology of G is metrisable.

(b) One has G = lim G,,, where the G,, (n > 1) are finite and the homomor-
phisms G,4+; — G, are surjective.

(c) The set of open subgroups of G is denumerable.
Show that these properties imply:

(d) There exists a denumerable dense subset of G.
Construct an example where (d) holds, but not (a), (b) or (c) [take for G the
bidual of a vector space over F,, with denumerably infinite dimension].

3) Let H be a closed subgroup of a profinite group G. Assume H # G. Show
that there exists € G so that no conjugate of  belongs to H [reduce to the
case where G is finite].

4) Let g be an element of a profinite group G, and let Cy = (g) be the
smallest closed subgroup of G containing g. Let []p"* be the order of Cy, and
let I be the set of p such that n, = co. Show that:

Co = [[ 2 x [] 2/p™2.

pel pgl

1.4 Pro-p-groups and Sylow p-subgroups

Let p be a prime number. A profinite group H is called a pro-p-group if it is a
projective limit of p-groups, or, which amounts to the same thing, if its order is
a power of p (finite or infinite, of course). If G is a profinite group, a subgroup
H of G is called a Sylow p-subgroup of G if it is a pro-p-group and if (G : H) is
prime to p.
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Proposition 3. Every profinite group G has Sylow p-subgroups, and these are
conjugate.

One uses the following lemma (Bourbaki, TG 1.64, prop. 8):
Lemma 3. A projective limit of non-empty finite sets is not empty.

Let X be the family of open normal subgroups of G. If U € X, let P(U)
be the set of Sylow p-subgroups in the finite group G/U. By applying Lemma
3 to the projective system of all P(U), one obtains a coherent family Hy of
Sylow p-subgroups in G/U, and one can easily see that H = lim Hy is a Sylow
p-subgroup in G, whence the first part of the proposition. In the same way, if
H and H' are two Sylow p-subgroups in G, let Q(U) be the set of z € G/U
which conjugate the image of H into that of H’; by applying Lemma 3 to the
Q(U), one sees that lim Q(U) # @, whence there exists an z € G such that
THx ' =H'

One may show by the same sort of arguments:

Proposition 4. (a) Every pro-p-subgroup is contained in a Sylow p-subgroup
of G.

(b) If G — G’ is a surjective morphism, then the image of a Sylow p-subgroup
of G is a Sylow p-subgroup of G'.

Ezamples. N
1) The group Z has the group Z, of p-adic integers as a Sylow p-subgroup.
2) If G is a compact p-adic analytic group, the Sylow p-subgroups of G are

open (this follows from the well-known local structure of these groups). The
order of G is thus the product of an ordinary integer by a power of p.

3) Let G be discrete group. The projective limit of the quotients of G which
are p-groups is a pro-p-group, denoted by G,, which is called the p-completion
of G; it is the largest quotient of G which is a pro-p-group.

Ezercise.

Let G be a discrete group such that G*® = G/(G, G) is isomorphic to Z (for
example the fundamental group of the complement of a knot in R3). Show that
the p-completion of G is isomorphic to Z,.

1.5 Pro-p-groups

Let I be a set, and let L(I) be the free discrete group generated by the elements
z; indexed by I. Let X be the family of normal subgroups M of L(I) such that:

a) L(I)/M is a finite p-group,
b) M contains almost all the z; (i.e., all but a finite number).
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Set F(I) = Jim L(I)/M. The group F(I) is a pro-p-group which one calls the
free pro-p-group generated by the z;. The adjective “free” is justified by the
following result:

Proposition 5. If G is a pro-p-group, the morphisms of F(I) into G are in
bijective correspondence with the families (g;)ics of elements of G which tend to
zero along the filter made up of the complements of finite subsets.

[When I is finite, the condition lim g; = 1 should be dropped; anyway, then the
complements of finite subsets don’t form a filter ...]

More precisely, one associates to the morphism f : F(I) — G(I) the family
(9s) = (f(z:)). The fact that the correspondence obtained in this way is bijective
is clear.

Remark.

Along with F(I) one may define the group F,(I) which is the projective limit
of the L(I)/M for those M just satisfying a). This is the p-completion of L(I);
the morphisms of F(I) into a pro-p-group are in one-to-one correspondence with
arbitrary families (g;)ier of elements of G. We shall see in §4.2 that F,(I) is free,
i.e., isomorphic to F(J) for a suitable J.

When I = [1,n] one writes F(n) instead of F(I); the group F(n) is the
free pro-p-group of rank n. One has F(0) = {1}, and F(1) is isomorphic to the
additive group Z,. Here is an explicit description of the group F(n):

Let A(n) be the algebra of associative (but not necessarily commutative)
formal series in n unknowns ¢y, . .., t,, with coefficients in Z, (this is what Lazard
calls the “Magnus algebra”). [The reader who does not like “not necessarily
commutative” formal power series may define A(n) as the completion of the
tensor algebra of the Z,-module (Z,)".] With the topology of coefficient-wise
convergence, A(n) is a compact topological ring. Let U be the multiplicative
group of the elements in A with constant term 1. One may easily verify that it
is a pro-p-group. Since U contains the elements 1 + ¢; prop. 5 shows that there
exists a morphism, 8 : F(n) — U, which maps z; to the element 1 + t; for every
i.

Proposition 6. (Lazard) The morphism 0 : F(n) — U is injective.

[One may hence identify F(n) with the closed subgroup of U generated by the
1+t

One can prove a stronger result. To formulate it, define the Z,-algebra of a
pro-p-group G as the projective limit of the algebras of finite quotients of G,
with coeffients in Z,; this algebra will be denoted Z,[[G]]. One has:

Proposition 7. There is a continuous isomorphism a from Zy[[F(n)]] onto
A(n) which maps z; to 1 +t;.
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The existence of the morphism a : Zy[[F(n)]] — A(n) is easy to see. On
the other hand, let I be the augmentation ideal of Z,[[F(n)]]; the elementary
properties of p-groups show that the powers of I tend to 0. Since the z; — 1
belong to I, one deduces that there is a continuous homomorphism

B: A(n) — Zy[[F(n))]

which maps t; onto z; — 1. One then has to check o3 =1 and Soa = 1, which
is obvious.

Remarks.
1) When n = 1, prop. 7 shows that the Z,-algebra of the group I' = Z, is
isomorphic to the algebra Z,[[T]], which is a regular local ring of dimension 2.

This can be used to recover the Iwasawa theory of “I'-modules” (cf. [143), and
also Bourbaki AC VII, §4).

2) In Lazard’s thesis [101] one finds a detailed study of F(n) based on prop.
6 and 7. For example, if one filters A(n) by powers of the augmentation ideal
I, the filtration induced on F(n) is that of the descending central series, and
the associated graded algebra is the free Lie Z,-algebra generated by the classes
T; corresponding to the t;. The filtration defined by the powers of (p, I) is also
interesting.



