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An Iterative Method For Unstructured Dynamic-grid Using Springs
Based on LU-SGS

WU Qing, ZHONG Yicheng, YU Shaozhi, HU Jun

( College of Energy and Power Engineering , Nanjing University of Aeronautics and Astronautics , Nenjing 210016, China )

Abstract:  An iterative method for unstructured dynamic-grid using springs based on LU-SCS (lower-upper svmmetric Gauss-Seidel ) s
presented to reduce time of tterative in dynamic discontinuities simulation. Dynamic grid iterative time is as much as time of field iterative as
shock and flex-wall are numerical fitting by time-dependent Euler equations. because dynamic boundary is moving and whole unstructured grids
are updated in every step of field iterative. A sparse matrix mapping grid topology based on spring strategy is presented . LU-SGS stralegy is
used in numencal simulation and dynamic grid is managed in order to solve the time choke point. Numerical results show that LU-SGS iterative
method can be used to dvnamic discontinuities fitting by implicit scheme. The presented method decreases more than 20% iterative time than
classical SOR method .

Key words: dynamic grid; LU-SGS; spring model; dynamic discontinuities fitting: computational fluid dynamic(CFD)
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Navier-Stocks Computations of Wind-Turbine Airfoil
using Low Mach Number Preconditioning

Wu Qing, Zhong Yicheng, Hu Jun, Yu Shaozhi

College of Energy & Power Engineering,
Nanjing University of Aeronautics and Astronautics
CEPE NUAA
Nanjing, China
nuaawuqing@nuaa.edu.cn

Abstract—Wind turbine airfoil is numerical simulated by using the
governing equations of compressible fluids in this paper. The
Reynolds Averaged Navier-Stocks computations are combined with
low Mach preconditioning and implicit matrix-free Lower-Upper
Symmerric Gauss-Seidel(LUSGS) iteration on unstructured meshes,
and the results are improved at the very low velocity speeds which
are representative of the flow field around a wind turbine airfoil.
Detailed LUSGS algorithm with preconditioning is present in this
paper, which is improved to cost less data storage and computational
time for steady flow. The steady and unsteady characteristics of static
2D-S809 airfoil are analyzed by the numerical results and compared
benveen calculations and tests. Aerodynamic coefficients have been
got using the algorithm of this work at all angles of attack. The
unsteadiness induced separation bubble shedding has been captured
by this method finally.

Keywords: wind turbine airfoil; preconditioning; unsteady flow;
LUSGS

L.

Wind energy is regenerative energy with the characteristics of
clean, low cost and affluent in storage. Wind turbine airfoil is an
important part of the whole wind generator, but little work is done on
this research field, and the technology is poor in china.

INTRODUCTION

Aerodynamic performance computation is an essential step in the
design of wind turbine. The calculation results can be used to modify
the profile of the 2-D airfoil and design the twisted 3-D blade, and 2-
D airfoil's aerodynamic characteristics are the basic design condition
for these works. Experiments and numerical simulations have being
done in these years [1-5], but there are many differences between
them. Compared with the tests, numerical simulations are more rapid
and cheap, but not very exactly.

At low Mach number around the wind turbine, CFD simulation
for compressible flow is invalid without preconditioning, and the
convergence is very slowly. A detailed dual time-stepping algorithm
with Preconditioning [6] and implicit LUSGS iteration [7] is
accordingly presented and improved in this paper. Some steady and
unsteady numerical results for static airfoil are analyzed and compared
with the tests.

The program of this numerical algorithm is developed by authors
and introduced into our CFD software system which is named
FOCUSS-CFD (Fluid Oriented Combined Universal Simulation
System - Computational Fluid Dynamic).

This work was supported by National Basic Research Program of China
(973 Program) (No. 2007CB210301).
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[I.  METHODS

A.  Dual time-stepping algorithm with Preconditioning

1) Governing Equations
For the general problem of compressible flows in a fixed
computational domain @, the time-duel compressible Navier—Stokes
equations can be written as:

J
— \UdV - F dS =0 1
= [vav + cj;QFw) L) )

where U represents the vector of conserved variable (mass,
F(U)

represents the convective fluxes and F, (U) represents the viscous

momentum and energy), and U =[p, pu, pv, pw, pe]r

fluxes, aQ is the boundary of domain @, and dS is area of interface
an respectively.

For retaining the time accuracy, A dual time-stepping procedure
is employed to solve the unsteady flow. A preconditioned
pseudotime-derivative term is introduced into (1) as following:

ro
oT

where 7 and t denote pseudotime and physical time respectively,

d -
0dv + = LUdV + iﬂ F(U)-F,(U)ds=0 ()

[ is a preconditioning matrix and Q =[p,u,v, w,T]T are primitive
variables. Note that as 7 — oo , the first term on the left-hand side of
(2) vanishes and (1) is recovered. This approach involves an inner
iteration loop in pseudotime that is wrapped by an outer loop
stepping through physical time. The solution at each physical time
level is treated as a steady state problem in pseudotime.

the preconditioning matrix T" is defined by:

4 Pr
6u ol pru
= & P Prv
6w P Prw
-1 pu pv pw prH+pCp

Where for ideal gas, @ is defined as,



, 1 pr 1 1 1+(y-1)M? 1
9: P= 2-—— — 3 2-}»_:_2 = —
v: pCp- c*M} TCp T™; ar
2
where azL)
I+(y-HM;

p= M,: is the preconditioning parameter, which is defined as:
: 2 2
B =min(max(M ., M .:.),1.0)
the local Mach Number is the maximum value around the ctrl

= 3M3,For

volume(including neighbour ctrl volumes), and M, iR

the external flow, the M_, is incoming free stream Mach number.
The eigenvalues of the system matrix are:
4,

qn

qn 3)

-l

I

(f+1)g,+S

(B+1g,-S
2

Where g, is the flow velocity normal to the surface of the control

volume, and S =+/g2(B-1)" +48c% .

Note thatas M_ — 1, [ — 1. the preconditioned equations

reduce to the original governing equations. For low speed flows, /3
1s small and the wave speeds are modified so that all the eigenvalues
possess the same order of magnitude. The system stiffness problem
has been overcome.

The eigem'ariables of the modified system matrix are:

kl (’; =D 5y v a1+ (k,9v—k, w)

D,

k_v[ p +0T )+ (k ow—k,ou)

oW = ©)

k. [——(7—_1) op + 0T+ (k ,du—k,ov)
P

ap+p(ﬂ'4 —ﬁqn)aqn
ap+p(i5 _ﬁqn)a‘Jn

The equations of the system are nondimensionalized by free
stream density, speed of sound, temperature, viscosity conductivity,
and a reference length. As the results, the sound speed and the states
equation are:

2)  Spatial discretization scheme
For the fixed grid, Equation (2) can be discretized in a polygonal
control volume V; as

rr 9y Y s Res wy =0 (s)
a7 ot
RES, is the residual given by:
nface
RES; = ) (F(U)~F,U))S; ®

=
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Because of the preconditioning matrix ", the inviscid flux is
calculated using a reformulated Roe-type flux difference splitting
scheme,

—(F(Q,,n,,)+F(Q,, 1) =TX[Apw) (1)
where A is the modified eigenvalues . X is the matrix of right
eigenvectors, respectively.

The primitive variables reconstructed by a weighted least square
linear reconstruction scheme at both sides of a ctrl face are used in (7).
The second order interpolation is applied to the reconstruction
procedure not only to supply the better accuracy, but also to prevent
oscillations in non-smooth regions.

3) Temporal discretization
The pseudotime term in (4) is discretized with a first order
backward difference and the physical time term is discretized in an
implicit fashion by a second order backward difference.

(—r +23 M)V,AQ, + RES; (0™ =0 (8)
um utt U”"
REST (O™ =V, - )*RES 7 (9
(") =V( S A (0 )
Where AQ, =Q™'-0" | U”*':U’"*'+MAQ ., and

aU . T
M = —, also m and n denote pseudotime and physical time inter
00
respectively. Note that if the Q™' is instead to Q™
(9) vanish to explicit time-stepping fashion in pseudotime term.
Obviously, once the terms about the physical time are called off, these
equations recover the solution of steady flow.

, equation(8) and

B.  Implicit Matrix-Free LUSGS

Hong Luo’s Implicit Matrix-Free LUSGS [7] is a better choice
of this solution, and the algorithm with preconditioning is considered
in this paper.

The residual term RES;(Q) atthe m +1 pseudotime level is
Iinearized giving the following equations:

3M; JORES S
(e 2y, RESQ) 0 | RESQ)
20, %0,

AQ,;
(10

-RES,-’ oM
To simplify the implicit time-step calculation. the first order

numerical flux vectors in the left-hand side of the above equation is
chosen as

I = .= 5

RES(Q) = E(F" + Ej rlj/llj(Q/ - Ql )

As Luo Hong done, equation (10) is simplified as following
with second physical time accuracy‘

(—+ Z/i S,j)1+

(11)

- M, 7o,

(12)

| = 7
~RES; (0 )_EE(AFJ-—I,/I,_,AQ,)S”



Vi I~ 3V
We define a=—-+—) A.S., b=—- and
AT 2; vy 2At

D=al+b- Diag(MI"l ). Equation (10) can be solved by using a
Lower—Upper Symmetry Gauss-Seidel (LUSGS) scheme on
unstructured gnds.

Fm'u.'ardsweep: S80Y airtoil Gilobal Mesh Grd block

AU = D'l[—RES,-'(Q'")—% Z(Aﬁj - 2;4U7)8;1(13)
J:je Lower(i)
Backwardsweep:

~ s =izl T
AU, =AU’ -D'[= Z(AF,-—A,-]-AU}-)S,-]-] (14)
J:jeUpper(i)
Where AC, =TAQ; . Obviously, Matrix I and M are

required by this method for unsteady flow. Fortunately, when the
steady flow 1s simulating, Matrix D vanishes to a real number, and

Mesh (zoom out) Bourcary Mesh

Figure 1. 8809 airfoil and computational field mesh

5 Expenment
Thiswork |

just T ! needs to be calculated and stored.

C. model and Grid

The S809 airfoil is designed for wind-turbine specifically in
1989(2], which of thickness is 21% chord. Lots of test reports are
published in these years [1-3]. A sketch of the airfoil is shown in
Figure 1. This airfoil also was chose to be the wind turbine model for
our study. The numerical results are compared with these tests, and
aerodynamic characteristics are analyzed at low speed in this paper.

The computational mesh is a block mesh with unstructured data
storage, and contains boundary layer mesh block and external mesh
block, see Figure 1. The mesh was generated by Gambit 2.3, and the
geometry topology information was imported to our own CFD a i
software by MSH file. The total of 53000 cells is all quadrilateral b T
elements, and there are 408 cells around the body, see Figure 1. The = 9)),.—7""1%? T e

cell thickness at the airfoil surface is dh =0.0001*L_, ., and there R B 03:.
[o

|
\
4
1
|
j

08 1

<&
are 32 celis along the stream vertical direction with 1.2 ratio. B /
Turbulence flow is assumed using the Spalart-Allmaras model without § o
transition term. All calculations were made with Reynoids numbers of i e S
2,000,000 or 500,000 at low Mach number for compressible flow.

0.5 T

[II.  RESULTS AND DISCUSSION

02 04 06 08
A Steady Aerodynamic Characteristics

Figure 2 through 4 show surface pressure distributions

comparisons between the calculations and experiments at the Figure 3. Pressure Distribution for o =1.02

Reynolds number 2,000,000. The airfoil chord is 0.6 m, and the free 15 - :
stream Mach number is 0.13333. Table 1 to 3 shows aerodynamic o o . | o ke
coefficients errors between the numerical simulated and the tested 4 FStleionnl g L ¢ Mg |
respectively. i : '\%

For three angles of attack of 0°, 1.02° and 5.13°, the Cp osf—— >°° = \1
comparisons show reasonably agreement over the entire airfoil & Foid I S L Y~
surface except in the regions of the laminar separation bubbles. The OF =z P S~ >
results of some commercial CFD software are similar to this work e o o el S e
[1], see Table 1. One reason of this error is the lack of detailed 0SEET
information on the inlet boundary conditions used in the experiment b : : .
[2]. As Ochs [2] said, the actual laminar flow is not to be simulated o9z 04 06 08 3
on the leading edge region. In fact, for numerical simulations, such xn
laminar separation bubbles are very difficult to be captured with the Figure 4, Prassure Diswribusion for & = 5.13°

RANS. The differences between the measured values and the
calculated are 12%-20% on lift coefficients, see Table 1 through 3.
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TABLE.1 COMPARISON OF FORCES (& = 0°)

Parameter Cl Diff, % Cd Diff, %
Ochs’s Exp 0.1469 0.0070
Fluent 0.1178 19.8 0.0096 37.1
This work 0.1182 19.5 0.0041 41.4
TABLE.2 COMPARISON OF FORCES ( @@ = 1.02°7)
Parameter Cl Diff, % Cd Diff, %
Ochs’s Exp 0.2716 0.0072
This work 0.2295 15.5 0.0045 37.5
TABLE.3 COMPARISON OF FORCES (@ = 5.137)
Parameter Cl Diff, % Cd Diff, %
Ochs's Exp 0.7609 0.0070
This work 0.6626 12.9 0.0093 32.9
13- =1 —71— — 1T T T 1T ]
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E A7
1T1E t T —~ 77
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Figure 5. Comparisons of Lift and Drag coefficients

The calculations at higher angles of attack were analyzed with
another experimental condition in this paper. The test results were
reported by Simms and Hand in 1999 [3]. The Reynolds number is
500,000, the chord is about 0.45m, and the free stream Mach number
is about 0. 05. It is impossible to simulate the compressible flow at
such Mach number without preconditioning, and the results are not
good agreed with the actual flow. Hence, the algorithm with
preconditioning for compressible flow is considered to solve this
problem.

Figure 5 shows the comparisons between the calculated and
experimental aerodynamic coefficients at all angles of attack with
Simms’s conditions. At the lower angles of attack, the lift coefficients
are consistent with tests relative. The lift coefficients decrease from

0.95 to 0.6 between the angles of 10.0° and 30.0°, but the
numerical results is higher than them. Over the airfoil upper surface,
the trailing edge laminar separation point is moving forward with the
angle of attack, and the separated bubble is changing larger. Because
of the massively bubble, the pressure distribution around the airfoil
includes a constant pressure region from the middle to trail section,
see figure 6. For lack of accuracy for laminar flow modeling on the
leading edge, the aerodynamic coefficients are not agree with tests

between the angles of 10.0° and 30.0°. For the details of such flow
including laminar and transition, CFD simulation is still weak. The
results of other’s current research are similar to our work [6].

For the static airfoil, the separation bubbles are still shedding
frequently [ 5], which are similar to flow over a cylinder. At the high
angle of attack, numerical simulation can not converge fluently for
this unsteadiness by steady algorithm. The unsteady aerodynamic
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842

characteristic of static airfoil is considered in the next section by
unsteady algorithm.

B.  Unsteady Aerodynamic Characteristics of static airfoil
For angle of attack 18.0", unsteady vortex shedding around the

airfoil 1s calculated by the Dual time-stepping algorithm with
preconditioning.

b2

Zovm out
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Figure 8. Comparisons Between steady and unsteady aerodynamic

coefficients (¢ = 18.07)

The physical time-step for this case was chosen to be 1.0 ms, 100
inner iterations were performed at each physical time level. The
predicted cycle time can be found as about 9.028s.

Computed contours of stream vorticity around the airfoil are
shown in Figure 7. It is shown in these pictures that the massively
bubble of trailing edge separation is shedding periodically over the
suction of the S809. The separation point is very far from trailing
edge and is holding the fixed position. But the size of separation
bubble is changing frequently and shedding with the constant
frequency. Figure 6 shows the tiny differences of surface pressure
distributions between steady and unsteady, which is tiny.



Because of these unsteady separation bubbles, the aerodynamic
coefficients are wavy. Figure 8 shows the lift coefficients and the
drag coefficients in the period including 3-4 cycle time. Due to
turbulence and laminar flow both exist at such high Reynolds number
around the 2D-airfoil, the turbulence simulation results are not agree
with the tests so good. Another reason of this phenomenon is that the
detailed conditions of the experiment are lack. However, the
unsteadiness induced bubbles of static airfoil can be captured and the
cycle time has been predicted by the algorithm of this work
successfully.

IV.  CONCLUSION

A dual time-stepping algorithm combined with low Mach
preconditioning and implicit matrix-free Lower-Upper Symmetric
Gauss-Seidel (LUSGS) iteration is considered in this paper detailed.
The LUSGS iteration is improved to cost less data storage for steady
calculation. The steady and unsteady stream around static wind-
airfoil can be simulated by this method at low Mach number for
compressible flow.

S809 was chose to be validated this numerical method, and the
steady and unsteady aerodynamic characteristics were analyzed.
Steady Computaticns at all angles of attack were completed in this
paper. which were agreed with tests segmental. Unsteady flow has
been computed for static airfoil by the dual time-stepping algorithm

at 18.0 of attack angle with Reynolds number of 500,000 in 1.5
seconds. The predicted cycle time of unsteady flow is about 0.028s.

The 2-D and 3-D calculations of wind-turbine airfoil are basic
complicated work for the design of the wind-turbine. In this paper,
the aerodynamic coefficients have been got and the errors between
experiments and calculation are present. Future work will focus on
the 3-D simulations using unsteady RANS equations based-on the
algorithm of this work.
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