葡萄糖爱能灵光光学

(二〇〇三年) 第16周

選挙篡

南京航空航天大学科技部第二〇〇四年三月

理学院

081 系

082 系

序号	姓名	职称	单位	论文题目	刊物、会议名称	年、卷、期
01	倪勤	正高	081	A globally convergent method of moving asymptotes with trust region technique	Optimigation Method and Software	2003年18卷3期
02	倪勤	正高	081	浅谈德国高校数学教育	中国教育理论杂志	2003年16期
03	戴或虹	副高	外	Testing Different Conjugate	Journal of	2003年21卷
	倪勤	正高	081	Gradient Methods for Large-scale unconstrained optimization	Computational Mathematics	3 期
04	戴华	正高	081	对称正交对称矩阵反问题的 最小二乘解	计算数学	2003年25卷 1期
05	戴华	正高	081	Jacobi矩阵逆特征问题解存在	高等学校计算数学学	2003年25卷
	姚承勇	本科	081	的条件	报	1 期
06	戴华	正高	081	一类对称正交反对称矩阵反 问题	工程数学学报	2003年20卷3期
07	解惠青 戴华	博士正高	081 081	On the sensitivity analysis of multiple eigenvalues of	Linear Algebra and Its Applications	2003 年 374 卷
				nonsymmetric matrix pencil		. ,.
08	古志鸣	正高	081	数学——不仅仅需要逻辑	大学数学	2003年19卷5期
09	张鲁明	正高	081	A Conservative Numerical Scheme for a Class of Nonlinear Schrodinger Equation with Wave Operator	Applied Mathematics and Computation	2003 年 145 卷
10	刘心声	副高	081	Testing for increasing convex	The Annals of the	2003年5卷
	王金德	正高	外	order in several populations	Institute of Statistical Mathematics	1 期
11	盛松柏	正高	081	Optimality Conditions of a Class of Special Nonsmooth Programming	Journal of Computational Math.	2003年21卷6期
12	李鹏同	正高	081	Ring isomorphisms and pentagon subspace lattices	Linear Algebra and its Applications	2003 年 367 卷
13	李鹏同	正高	081	Elementary operators on J-subspace lattice algebras	Bull.Austral.Math.Soc	2003年68卷
14	李鹏同	正高	081	Invertibility preserving linear maps on J-subspace lattice algebras	Linear Algebra and its Applications	2003年372 卷
15	安玉坤	正高	081	Periodic solutions of a Nonlinear Suspension Bridge Equation with Damping and Nonconstant Load	Journal of Mathematical Analysis and Application	2003 年 279 卷 2 期
16	安玉坤	正高	081	On the Coupled System of second and fourth order elliptic	Applied Mathematics and Computation	2003年140 卷 2-3 期

	,			equations		
17	安玉坤	正高	081	吊桥耦合系统静态解的存在	西北师范大学学报	2003年39卷
17	Z II Y	117114	001	唯一性	(自然科学版)	1期
18	岳勤	副高	081	域上矩阵的相似标准型	徐州师范大学学报	2003年21卷
					(自然科学版)	4 期
19	岳勤	副高	081	On Lifting Projective Modules	Communications in	2003年31卷
				Modulo an Essential Socle	Algebra	9期
20	耿显明	副高	081	宏观经济均衡发展的数学理 论(III)	应用数学与计算数学 学报	2003年17卷1期
21	顾玉娣	副高	081	具有线性回归特征的多组实	南京航空航天大学学	2003年35卷
	戴振东	正高	051	验结果对比分析方法的研究	报	5 期
22	顾玉娣	副高	081	大学生数学建模竞赛活动的	南京航空航天大学学	2003年5卷
				认识与实践	报(社会科学版)	
23	王正盛	中级	081	阻尼振动系统中的逆二次特	2003 年第七届全国计	2003年
				征值问题	算数学年会	
24	钟宝江	中级	081	On the restrarted Arnoldi	2003 年第七届全国计	2003年
				method for large nonsymmetric	算数学年会	
				matrix problems		
25	钟宝江	中级	081	GMRES 方法的收敛率	高等学校计算数学学	2003年25卷
					报	3 期
26	钟宝江	中级	081	如何促进学生有效理解和接	南京航空航天大学学	2003年5卷
				受数学的抽象问题	报(社会科学版)	
27	李艳	初级	081	有优先权开关寿命连续型两	兰州大学学报	2003年39卷
	叶尔骅	正高	081	部件冷贮备可修系统的可靠		2 期
				性分析		
28	李秀娟	中级	081	求解多目标优化问题的随机	南京航空航天大学学	2003年35卷
				梯度遗传算法	报	4 期
29	杨秀绘	中级	081	一个退化抛物方程解的极大	南京大学学报数学半	2003年20卷
		777		值点的注记	年刊	1期
30	丁洁玉	硕士	081	对数正态与正态分布定时截	南京航空航天大学学	2003年35卷
	叶尔骅	正高	081	尾寿命试验参数的近似置信	报	6 期
	杨纪龙	副高	081	域		
31	许克祥	初级	081	Coloring of some integer	Journal of Southeast	2003年19卷
20.00				distance graphs	University (English	4 期
	>4 1 v>		000		Editon)	
32	施大宁	正高	082	A modified mean field theory	Chinese Physics letters	2003年20卷
				for spin system with orbital	* *	5 期
22	+v -L		000	degeneracy	V 24: 24. 1. 14. 14. 1 L.	2002/5 25 24
33	赵志敏	正高	082	血液的荧光光谱特性分析及	光谱学与光谱分析	2003年25卷
	陈玉明	硕士	082	应用研究		5 期
	俞晓磊	本科	082	2-11 12 W/12 07 - 11 13 2-20 / 1	EZZZW	2002 / 20 1/2
34	俞晓磊	本科	082	应用光激励 SMA 技术实现结	量子电子学	2003年20卷
2.5	赵志敏	正高	082	构损伤控制	丰宁的公的工厂 W.W.	2期
35	廖立	副高	082	开设文科大学物理 强化学生	南京航空航天大学学	2003年5卷

				素质教育	报(社会科学版)	23 期
36	王开圣	中级	082	轧锟堆焊用全纤维电热处理 炉	机械科学研究院哈尔 滨焊接研究所、中国 机械工程学会焊接学 会	2003年10期
37	王开圣 刘小廷	中级副高	082 082	十一线电位差计定标的可操 作性	大学物理实验	2003年16卷2期
38	张永梅	中级	082	Evolution of Spin and Charge in a System with Interacting Impurity and Conductance Electrons	Chinese Physics Letters	2003年20卷 11期
39	罗建	硕士	082	Slave-boson approach to electronic Raman spectra in high-Tc cuprates	Physica C	2003 年 399 卷

A GLOBALLY CONVERGENT METHOD OF MOVING ASYMPTOTES WITH TRUST REGION TECHNIQUE

QIN NI*

Nanjing University of Aeronautics and Astronautics, 210016 Nanjing, P.R. China

(Received 6 September 2001; Revised 29 January 2003; In final form 29 January 2003)

The method of moving asymptotes is known to work well for certain problems arising in structural optimization. A globally convergent method of moving asymptotes with trust region technique is proposed in this paper. A convex separable subproblem is solved in each iteration. The choice of asymptotes is controlled by the trust region radius such that global convergence of the algorithm is obtained. In addition, preliminary numerical tests are given.

Keywords: Method of moving asymptotes; Trust region method; Structural optimization

1 INTRODUCTION

We consider algorithms which combine moving asymptotes and trust region methods and which are designed for solving the following bound constrained optimization problem

$$\min \quad f(x)
\text{s.t.} \quad x^l \le x \le x^u,$$
(1.1)

where $x \in \mathbb{R}^n$, the function f is assumed to be continuous in Ω and twice continuously differentiable in the interior of Ω , $\Omega = \{x \in \mathbb{R}^n : x^l \le x \le x^u\}$, x^l and x^u are finite fixed vectors. It is assumed that

$$b_m = \min_{1 \le i \le n} (x_i^u - x_i^l) \ge 0.$$
 (1.2)

The method of moving asymptotes (MMA) was firstly presented in [7], and frequently used for structural optimization. Afterwards this method was further studied and developed. Zillober combined the method with a line search, and obtained a kind of efficient global convergent sequential convex programming method [11,12]. For other extensions and developments see Refs. [2] and [8]. However, the properties of the moving asymptotes approximation is so far not thoroughly studied, the choice of the asymptotes is not very reasonable, and a global technique is complicated [9]. These may be a critical point of MMA. It is hoped that the famous trust region technique can improve MMA.

ISSN 1055-6788 print; ISSN 1029-4937 online © 2003 Taylor & Francis Ltd DOI: 10.1080/1055678031000118491

^{*} Corresponding author. E-mail: niqfs@mail.nuaa.edu.cn

284 QIN NI

The aim of this paper is to propose a globally convergent algorithm which combines the moving asymptotes approximation with the trust region technique. This algorithm is used to solve the bound constrained optimization problem. Through the convergence analysis of the algorithm the properties of moving asymptotes approximation and choice of asymptotes are analyzed and studied.

At first, we give some definitions and assumptions. The projected gradient $\nabla_{\Omega} f$ of f is defined by

$$[\nabla_{\Omega} f(x)]_{i} = \begin{cases} \frac{\partial f}{\partial x_{i}}, & x_{i}^{l} < x_{i} < x_{i}^{u} \\ \min\left(0, \frac{\partial f}{\partial x_{i}}\right), & x_{i} = x_{i}^{l} \end{cases}$$

$$\max\left(0, \frac{\partial f}{\partial x_{i}}\right), \quad x_{i} = x_{i}^{u}$$

$$(1.3)$$

A point $x \in \Omega$ is called to be a stationary point of problem (1.1) if $\nabla_{\Omega} f(x) = 0$. The projection operator P on Ω is $P(x) = (P_1[x_1], \dots, P_n[x_n])^T$, where

$$P_i[x_i] = \begin{cases} x_i^l, & \text{if } x_i \le x_i^l \\ x_i^u, & \text{if } x_i \ge x_i^u \\ x_i, & \text{otherwise} \end{cases}$$
 (1.4)

We denote the set of all active bound constraints by I(x).

$$I(x) = \{i : x_i = x_i^u \text{ or } x_i = x_i^l, x \in \Omega\}.$$

This paper is organized as follows. We discuss the trust region subproblem in Section 2 and propose new algorithm in the subsequent section. The convergence of the algorithm is presented in Section 4 and numerical tests are given in Section 5.

2 TRUST REGION SUBPROBLEM

The algorithm for solving (1.1) is of trust region type. At each iterate, a subproblem is defined by

$$\min_{d \in R^n} \quad m(x, d) = f(x) + \sum_{i=1}^n \phi_i(d_i)
\text{s.t.} \quad d_i^l \le d_i \le d_i^u, \quad i = 1, \dots, n$$
(2.1)

where

$$d_i^u = \min(\Delta_i, x_i^u - x_i), \quad d_i^l = \max(-\Delta_i, x_i^l - x_i), \tag{2.2}$$

 Δ_i is trust region radius,

$$\phi_{i}(d_{i}) = \begin{cases} \frac{g_{i}d_{i}(u_{i} - x_{i})}{u_{i} - x_{i} - d_{i}} + \frac{\varepsilon_{i}d_{i}^{2}}{(u_{i} - x_{i} - d_{i})(x_{i} - l_{i} + d_{i})}, & i \in I_{+} \\ \frac{g_{i}d_{i}(x_{i} - l_{i})}{x_{i} - l_{i} + d_{i}} + \frac{\varepsilon_{i}d_{i}^{2}}{(u_{i} - x_{i} - d_{i})(x_{i} - l_{i} + d_{i})}, & i \in I_{-} \end{cases}$$
(2.3)

 $I_+ = \{i: g_i \ge 0\}, I_- = \{1, \dots, n\}/I_+, (g_1, \dots, g_n)^T = \nabla f(x). \ \varepsilon_i, l_i \ \text{and} \ u_i \ \text{are parameters},$ which satisfy

$$l_i < x_i < u_i, \quad \varepsilon_i > 0, \quad u_i - x_i - d_i > 0, \quad x_i - l_i + d_i > 0,$$
 (2.4)

for $d_i \in [d_i^l, d_i^u]$, i = 1, ..., n. Their detailed choice is discussed in Lemma 2.1 For convenience, some notations are introduced:

$$a_i = u_i - x_i, \quad b_i = x_i - l_i, \quad v_i = u_i - l_i, \quad i = 1, \dots, n.$$
 (2.5)

It follows from (2.4) that

$$a_i > 0, \quad b_i > 0, \quad v_i > 0, \quad v_i = a_i + b_i.$$
 (2.6)

It is easy to see that the subproblem (2.1) is separable and convex. It is equivalent to n independent one-dimensional bound constrained subproblems

$$\min_{\substack{d_i \\ \text{s.t.}}} \phi_i(d_i) \\
\text{s.t.} \quad d_i^l \le d_i \le d_i^u,$$
(2.7)

i = 1, ..., n. Because $\phi_i(d_i)$ is a strictly convex function, there exists a unique optimal solution in (2.7). With some calculation, we have

$$\frac{\partial m(x,d)}{\partial d_{i}} = \phi'_{i}(d_{i}) = \begin{cases}
\frac{g_{i}a_{i}^{2}}{(a_{i}-d_{i})^{2}} + \frac{\varepsilon_{i}}{v_{i}} \left(\frac{a_{i}^{2}}{(a_{i}-d_{i})^{2}} - \frac{b_{i}^{2}}{(b_{i}+d_{i})^{2}} \right), & i \in I_{+} \\
\frac{g_{i}b_{i}^{2}}{(b_{i}+d_{i})^{2}} + \frac{\varepsilon_{i}}{v_{i}} \left(\frac{a_{i}^{2}}{(a_{i}-d_{i})^{2}} - \frac{b_{i}^{2}}{(b_{i}+d_{i})^{2}} \right), & i \in I_{-}
\end{cases} (2.8)$$

where we observe that

$$\frac{\varepsilon_i d_i^2}{(u_i-x_i-d_i)(x_i-l_i+d_i)} = \frac{\varepsilon_i d_i^2}{(a_i-d_i)(b_i+d_i)} = \frac{\varepsilon_i}{v_i} \left(\frac{a_i^2}{a_i-d_i} + \frac{b_i^2}{b_i+d_i} \right) - \varepsilon_i.$$

The function m(x, d) is a first-order approximation of f, i.e.

$$m(x, 0) = f(x), \quad \nabla_d m(x, 0) = (\phi'_1(0), \dots, \phi'_n(0))^T = (g_1, \dots, g_n)^T = \nabla f(x).$$

It is noted that an additional term in $\phi_i(d_i)$ is similar to those in [8] and [11]. However, it is somewhat different. The minimal solution point of $\phi_i(d_i)$ is bounded when ε_i approaches to 0_+ , which is discussed later. Other MMA approximations with usual additional terms do not possess this property.

Let $\phi'_{i}(d_{i}) = 0$, i.e.

$$0 = \frac{g_i a_i^2}{(a_i - d_i)^2} + \frac{\varepsilon_i}{v_i} \left(\frac{a_i^2}{(a_i - d_i)^2} - \frac{b_i^2}{(b_i + d_i)^2} \right) \quad \text{for } i \in I_+$$

which means

$$\left(\frac{a_i - d_i}{b_i + d_i}\right)^2 = \frac{a_i^2}{b_i^2} \left(1 + \frac{v_i g_i}{\varepsilon_i}\right).$$

By (2.4) and (2.6), we obtain

$$\frac{a_i - d_i}{b_i + d_i} = \frac{a_i \lambda_i}{b_i}$$

286

where

$$\lambda_i = \left(1 + \frac{v_i g_i}{\varepsilon_i}\right)^{1/2}$$

and

$$d_i = \frac{a_i b_i (1 - \lambda_i)}{b_i + a_i \lambda_i} = \frac{a_i b_i (1 - \lambda_i^2)}{(1 + \lambda_i)(b_i + a_i \lambda_i)} = -\frac{a_i b_i v_i}{\varepsilon_i (1 + \lambda_i)(b_i + a_i \lambda_i)} g_i \quad \text{for } i \in I_+.$$

With the same deduction, we obtain the solution d'_i of $\phi'_i(d_i) = 0$ as

$$d_i' = -\alpha_i' g_i \tag{2.9}$$

where

$$\alpha_{i}' = \begin{cases} \frac{a_{i}b_{i}v_{i}}{\varepsilon_{i}(\lambda_{i}+1)(b_{i}+\lambda_{i}a_{i})}, & i \in I_{+} \\ \frac{a_{i}b_{i}v_{i}}{\varepsilon_{i}(\lambda_{i}+1)(a_{i}+\lambda_{i}b_{i})}, & i \in I_{-} \end{cases} \quad \lambda_{i} = \begin{cases} \left(1+\frac{v_{i}g_{i}}{\varepsilon_{i}}\right)^{1/2}, & i \in I_{+} \\ \left(1-\frac{v_{i}g_{i}}{\varepsilon_{i}}\right)^{1/2}, & i \in I_{-} \end{cases}$$
(2.10)

Hence the solution of (2.7) is described by

$$d_i = -\alpha_i g_i \tag{2.11}$$

where

$$\alpha_{i} = \begin{cases} \alpha'_{i}, & \text{if } d'_{i} \in [d^{l}_{i}, d^{u}_{i}] \\ \frac{d^{l}_{i}}{-g_{i}}, & \text{if } d'_{i} < d^{l}_{i} \\ \frac{d^{u}_{i}}{-g_{i}}, & \text{if } d'_{i} > d^{u}_{i} \end{cases}$$
(2.12)

It follows from (2.9) and (2.10) that if $g_i = 0$, then $d'_i = 0$; if $g_i \neq 0$, then

$$\lim_{\varepsilon_i \to 0_+} \varepsilon_i(\lambda_i + 1) = 0, \quad \lim_{\varepsilon_i \to 0_+} \varepsilon_i(\lambda_i + 1)\lambda_i = \begin{cases} v_i g_i, & i \in I_+ \\ -v_i g_i, & i \in I_- \end{cases}$$

and

$$\lim_{\varepsilon_i \to 0_+} d_i' = \begin{cases} -b_i, & i \in I_+ \\ a_i, & i \in I_- \end{cases}$$

which means the boundedness of the minimal solution of $\phi_i(d_i)$.

We define three sets by

$$J_1 = \{i : d'_i \in [d_i^l, d_i^u]\}, \quad J_2 = \{i : d'_i < d_i^l\}, \quad J_3 = \{i : d'_i > d_i^u\}. \tag{2.13}$$

In the following lemma, some conditions for parameters l_i , u_i and ε_i are formulated, which guarantee the boundedness of α'_i .

LEMMA 2.1 Assume that the parameters l_i , u_i and ε_i satisfy the following conditions:

$$\begin{cases}
\max\{c_0(x_i^u - x_i^l) + \Delta_i, \ c_1(x_i^u - x_i^l)\} \le x_i - l_i \le c_2(x_i^u - x_i^l) \\
\max\{c_0(x_i^u - x_i^l) + \Delta_i, \ c_1(x_i^u - x_i^l)\} \le u_i - x_i \le c_2(x_i^u - x_i^l)
\end{cases}$$
(2.14)

$$\max\left(\varepsilon_{l}, \frac{|g_{i}|}{b_{\varepsilon}}\right) \leq \varepsilon_{i} \leq \varepsilon_{u} \tag{2.15}$$

i = 1, ..., n, where $0 < c_0 < c_1 < 1 < c_2, 0 < \varepsilon_l < \varepsilon_u, b_{\varepsilon} > 0$. Then, α'_i is bounded, i.e.

$$\alpha_l \le \alpha_i' \le \alpha_u, \quad i = 1, \dots, n$$
 (2.16)

where

$$\alpha_l = \frac{c_1^2 b_m^2}{2\varepsilon_u (1 + 2c_2 b_\varepsilon b_M)} > 0, \quad \alpha_u = \frac{c_2^2 b_M^2}{2\varepsilon_l}, \quad b_M = \max_{1 \le i \le n} (x_i^u - x_i^l).$$

Proof From (2.10), (2.14) and (2.15), we obtain

$$1 \le \lambda_i^2 \le 1 + 2c_2b_{\varepsilon}b_M$$

$$c_1^2b_m^2v_i \le a_ib_iv_i \le c_2^2b_M^2v_i$$

Hence, from $\lambda_i \geq 1$ and (2.6) it follows that

$$\varepsilon_i(\lambda_i + 1)(b_i + \lambda_i a_i) > \varepsilon_i(\lambda_i + 1)v_i > 2\varepsilon_i v_i$$

and

$$\varepsilon_i(\lambda_i+1)(b_i+\lambda_ia_i) \leq 2\varepsilon_i\lambda_i(b_i+\lambda_ia_i) \leq 2\varepsilon_i\lambda_i^2v_i \leq 2\varepsilon_u(1+2c_2b_\varepsilon b_M)v_i.$$

With the same deduction, we have

$$2\varepsilon_i v_i \leq \varepsilon_i (\lambda_i + 1)(a_i + \lambda_i b_i) \leq 2\varepsilon_u (1 + 2c_2 b_{\varepsilon} b_M) v_i$$
.

These imply that

$$\alpha_l \leq \alpha_i' \leq \alpha_u, \quad i = 1, \ldots, n.$$

 $\alpha_l > 0$ because of (1.2).

It is noted that the condition (2.14) is similar to that in [9], however the left side inequalities are different due to the trust region constraint. This means that for given Δ_i , the parameters l_i and u_i have to satisfy

$$l_i < x_i - \Delta_i, \quad u_i > x_i + \Delta_i \tag{2.17}$$

which may be a reasonable control of l_i and u_i . In a practical implementation, Δ_i in (2.14) can be replaced by $\tilde{c}\Delta_i$, ($\tilde{c} \in (0, 1]$) when Δ_i is relatively large. For the convenience in the proof, we only consider the case $\tilde{c} = 1$.

In order to obtain a main results about the subproblem, we estimate the difference between $\phi_i(0)$ and $\phi_i(d_i)$ in the following lemma.

LEMMA 2.2 Assume that d_i is the solution of (2.7) given in (2.11), then we have

$$\phi_{i}(0) - \phi_{i}(d_{i}) = \begin{cases} \alpha'_{i}\beta_{i}g_{i}^{2}, & i \in J_{1} \\ -d_{i}^{l}\beta_{i}g_{i}, & i \in J_{2} \\ -d_{i}^{u}\beta_{i}g_{i}, & i \in J_{3} \end{cases}$$
(2.18)

where

$$\beta_{i} = \begin{cases} \frac{a_{i}\lambda_{i}}{(a_{i} + \alpha'_{i}g_{i})(\lambda_{i} + 1)}, & i \in I_{+} \cap J_{1} \\ \frac{b_{i}\lambda_{i}}{(b_{i} - \alpha'_{i}g_{i})(\lambda_{i} + 1)}, & i \in I_{-} \cap J_{1} \\ \frac{a_{i}b_{i}}{(a_{i} - d_{i}^{l})(b_{i} + d_{i}^{l})(\lambda_{i} + 1)}, & i \in J_{2} \\ \frac{a_{i}b_{i}}{(a_{i} - d_{i}^{u})(b_{i} + d_{i}^{u})(\lambda_{i} + 1)}, & i \in J_{3} \end{cases}$$

$$(2.19)$$

Proof If $i \in J_1$, then it follows from (2.3) and (2.10) that

$$\phi_i(0) - \phi_i(d_i) = \phi_i(0) - \phi_i(-\alpha_i'g_i)$$
$$= \alpha_i'g_i^2\beta_i.$$

If $i \in J_2$, then $g_i > 0$, $i \in I_+$ and

$$\begin{aligned} \phi_{i}(0) - \phi_{i}(d_{i}) &= \phi_{i}(0) - \phi_{i}(d_{i}^{l}) \\ &= \frac{-d_{i}^{l}}{a_{i} - d_{i}^{l}} \left(g_{i} a_{i} + \frac{\varepsilon_{i} d_{i}^{l}}{b_{i} + d_{i}^{l}} \right) \\ &= \frac{-d_{i}^{l}}{(a_{i} - d_{i}^{l})(b_{i} + d_{i}^{l})} (g_{i} a_{i} b_{i} + d_{i}^{l}(g_{i} a_{i} + \varepsilon_{i})) \end{aligned}$$

The definition of J_2 means that $d_i^l > -\alpha_i' g_i$. Taking into account the condition (2.6), we obtain

$$\phi_{i}(0) - \phi_{i}(d_{i}) \geq \frac{-d_{i}^{l}}{(a_{i} - d_{i}^{l})(b_{i} + d_{i}^{l})} (g_{i}a_{i}b_{i} - \alpha_{i}'g_{i}(g_{i}a_{i} + \varepsilon_{i}))$$

$$= \frac{-d_{i}^{l}g_{i}a_{i}b_{i}}{(a_{i} - d_{i}^{l})(b_{i} + d_{i}^{l})} \left(1 - \frac{v_{i}(a_{i}g_{i}/\varepsilon_{i} + 1)}{(\lambda_{i} + 1)(b_{i} + a_{i}\lambda_{i})}\right) \quad \text{cf. (2.10)}$$

$$= \frac{-d_{i}^{l}g_{i}a_{i}b_{i}}{(a_{i} - d_{i}^{l})(b_{i} + d_{i}^{l})} \frac{(\lambda_{i} + 1)(b_{i} + a_{i}\lambda_{i}) - (v_{i} + a_{i}(\lambda_{i}^{2} - 1))}{(\lambda_{i} + 1)(b_{i} + a_{i}\lambda_{i})} \quad \text{cf. (2.10)}$$

$$= \frac{-d_{i}^{l}g_{i}a_{i}b_{i}}{(a_{i} - d_{i}^{l})(b_{i} + d_{i}^{l})(\lambda_{i} + 1)} \frac{\lambda_{i}v_{i}}{b_{i} + a_{i}\lambda_{i}} \quad \text{cf. (2.6)}$$

$$\geq \frac{-d_{i}^{l}g_{i}a_{i}b_{i}}{(a_{i} - d_{i}^{l})(b_{i} + d_{i}^{l})(\lambda_{i} + 1)}$$

$$= \beta_{i}(-d_{i}^{l})g_{i}. \quad (2.20)$$

If $i \in J_3$, then $-d_i^u > \alpha_i' g_i$, $g_i < 0$, $i \in I_-$ and

$$\begin{aligned} \phi_i(0) - \phi_i(d_i) &= \phi_i(0) - \phi_i(d_i^u) \\ &= \frac{d_i^u}{(a_i - d_i^u)(b_i + d_i^u)} ((-g_i)a_ib_i - d_i^u((-g_i)b_i + \varepsilon_i)) \end{aligned}$$

From the definition of J_3 and condition (2.6), we obtain

$$\phi_{i}(0) - \phi_{i}(d_{i}) \geq \frac{d_{i}^{u}(-g_{i})}{(a_{i} - d_{i}^{u})(b_{i} + d_{i}^{u})} (a_{i}b_{i} - \alpha_{i}'((-g_{i})b_{i} + \varepsilon_{i}))$$

$$= \frac{d_{i}^{u}(-g_{i})a_{i}b_{i}}{(a_{i} - d_{i}^{u})(b_{i} + d_{i}^{u})} \frac{\lambda_{i}v_{i}}{(\lambda_{i} + 1)(a_{i} + \lambda_{i}b_{i})}$$

$$\geq \frac{d_{i}^{u}(-g_{i})a_{i}b_{i}}{(a_{i} - d_{i}^{u})(b_{i} + d_{i}^{u})(\lambda_{i} + 1)}$$

$$= \beta_{i}d_{i}^{u}(-g_{i}). \tag{2.21}$$

Thus, the lemma is proved.

Now we define

$$h(x) = P[x - D\nabla f(x)] - x \tag{2.22}$$

where $D = \text{diag}(\alpha'_1, \dots, \alpha'_n), \alpha'_1, \dots, \alpha'_n$ are the same as in (2.10), then a main result is described in the following theorem.

THEOREM 2.3 Assume that the conditions (2.14) and (2.15) are satisfied, then we have

$$f(x) - m(x, d) \ge \beta \min\left(1, \frac{\Delta m}{b_M}\right) \|h(x)\|^2, \tag{2.23}$$

where $\beta = \min_{1 \le i \le n} (\beta_i / \alpha_i') > 0, \Delta_m = \min_{1 \le i \le n} \Delta_i$.

Proof If $i \in J_1$, then

$$h_i(x) = P_i[x_i - \alpha_i'g_i] - x_i = -\alpha_i'g_i.$$

From (2.18), we obtain

$$\phi_i(0) - \phi_i(d_i) = \frac{\beta_i}{\alpha_i'} h_i^2(x). \tag{2.24}$$

If $i \in J_2$, then we have from (2.13) that $d_i^l > -\alpha_i' g_i$, $g_i > 0$ and $x_i - \alpha_i' g_i < x_i^u$ because of $\alpha' > 0$ and $d_i^l \le 0$. Consider three cases in J_2 .

(1) If $x_i = x_i^l$, then

$$h_i(x) = P_i[x_i - \alpha_i'g_i] - x_i = 0.$$

From (2.3) and $d_i^l = \max\{-\Delta_i, x_i^l - x_i\} = 0$, it follows that

$$\phi_i(0) - \phi_i(d_i) = \phi_i(0) - \phi_i(d_i^l) = 0.$$
(2.25)

(2) If $x_i > x_i^l$, $x_i - x_i^l \le \Delta_i$, then $d_i^l = x_i^l - x_i$, $x_i - \alpha_i' g_i < x_i + d_i^l = x_i^l$, and $h_i(x) = P_i[x_i - \alpha_i' g_i] - x_i = x_i^l - x_i = d_i^l.$

From (2.20), we have that

$$\phi_i(0) - \phi_i(d_i) = \frac{\beta_i}{\alpha_i'} |d_i^l| |\alpha_i' g_i| \ge \frac{\beta_i}{\alpha_i'} h_i^2(x).$$
 (2.26)

(3) If $x_i > x_i^l$, $x_i - x_i^l > \Delta_i$, then $d_i^l = -\Delta_i$. From (2.22), we obtain

$$|h_i(x)| = |P_i[x_i - \alpha_i'g_i] - x_i| \le \min(x_i - x_i^l, |\alpha_i'g_i|).$$

From (2.20), we obtain

$$\phi_{i}(0) - \phi_{i}(d_{i}) \ge -d_{i}^{l}g_{i}\beta_{i} \ge \frac{\Delta_{i}\beta_{i}}{\alpha_{i}'}(\alpha_{i}'g_{i})\frac{x_{i} - x_{i}^{l}}{x_{i}^{u} - x_{i}^{l}} \ge \frac{\beta_{i}}{\alpha_{i}}\frac{\Delta_{i}}{x_{i}^{u} - x_{i}^{l}}h_{i}^{2}(x). \tag{2.27}$$

If $i \in J_3$, then we have that $g_i < 0$ and $x_i - \alpha'_i g_i > x_i^l$ because of $\alpha' > 0$ and $d_i^u \ge 0$. With a similar deduction, we obtain

$$\phi_{i}(0) - \phi_{i}(d_{i}) = \frac{\beta_{i}}{\alpha'_{i}} h_{i}^{2}(x), \quad \text{if } x_{i} = x_{i}^{u},
\phi_{i}(0) - \phi_{i}(d_{i}) \ge \frac{\beta_{i}}{\alpha'_{i}} h_{i}^{2}(x), \quad \text{if } x_{i} > x_{i}^{u}, x_{i}^{u} - x_{i} \le \Delta_{i}.$$
(2.28)

If $x_i < x_i^u$, $x_i^u - x_i > \Delta_i$, then $d_i^u = \Delta_i$, and

$$\phi_i(0) - \phi_i(d_i) \ge \frac{\beta_i}{\alpha_i'} \frac{\Delta_i}{x_i^u - x_i^l} h_i^2(x).$$
 (2.29)

The inequalities (2.24)–(2.29) together imply that (2.23) is valid. In addition, Lemma 2.1 and (2.19) imply that $\beta > 0$.

In addition, we have the following statement.

LEMMA 2.4 Let $x \in \Omega$, D is defined by (2.22), l_i , u_i , ε_i satisfy (2.14) and (2.15). Then x is a stationary point for (1.1) if and only if

$$h(x) = P[x - tD\nabla f(x)] - x = 0$$

for all $t \geq 0$.

Proof From Lemma 2.1, we obtain that *D* is diagonal and positive definite. Hence, this lemma results immediately from Proposition 1.35 of [1].

3 ALGORITHM

We are now able to outline the new algorithm, which combines the moving asymptotes approximation with trust region technique.

ALGORITHM 3.1

Step 0 Choose $x_0 \in \Omega$, k = 0. Choose the constants c_0 , c_1 , c_2 , ε_l , ε_u , b_{ε} , η_1 , η_2 , r_1 , r_2 and r_3 such that $0 < c_0 < c_1 < 1 < c_2, 0 < \varepsilon_l < \varepsilon_u, b_{\varepsilon} > 0, 0 \le \eta_1 < \eta_2 < 1, 0 < r_1 \le \eta_2 < 1$ $r_2 < 1 < r_3$, and define the initial trust region radius $\Delta_i^0 > 0$, i = 1, ..., n.

Step 1 Compute $f(x^k)$, g_k , and define a subproblem (2.1). Let d^k be its solution (see (2.7)). If $d^k = 0$, then stop.

Step 2 Compute

$$\rho_k = \frac{f(x^k + d^k) - f(x^k)}{m(x^k, d^k) - f(x^k)}$$
(3.1)

If

$$\rho_k \ge \eta_1,\tag{3.2}$$

then $x^{k+l} = x^k + d^k$, otherwise $x^{k+1} = x^k$.

Step 3 Update Δ_k .

$$\Delta_i^{k+1} \in \begin{cases} [r_2 \Delta_i^k, \Delta_i^k], & \text{if } \rho_k < \eta_2 \\ [\Delta_i^k, r_3 \Delta_i^k], & \text{otherwise} \end{cases}$$
 (3.3)

 $i=1,\ldots,n.$ Step 4 Update l_i^{k+1} , u_i^{k+1} and ε_i^{k+1} such that (2.14) and (2.15) are satisfied. Step 5 k = k + 1, go to Step 1.

Remarks

- (1) An iteration in Algorithm 3.1 is called successful if the test (3.2) is satisfied, and unsuccessful otherwise.
- (2) If the solution of (2.7), d (see (2.9) and (2.10)) is nonzero, then the test (3.2) is easily satisfied, if the trust region radius is small enough. If d=0, then a stationary point is reached, which is described in the following lemma.

LEMMA 3.1 Let d be a solution of (2.7). Then d = 0 if and only if $\nabla_{\Omega} f(x) = 0$.

Proof From (2.9) and $\alpha'_i \geq \alpha_l > 0$ in Lemma 2.1, it follows that

$$d_i = 0 \iff g_i = 0$$
, for all $i \in J_1$.

If $i \in J_2$, then from (2.11) to (2.13) we have $d_i = d_i^l$, $g_i > 0$, $\min(0, g_i) = 0$, because $\alpha'_i > 0$ and $d_i^l \le 0$ (see (2.2)). Hence, we obtain

$$d_i = 0 \iff d_i^l = 0 \iff x_i^l = x_i \text{ (because } \Delta_i > 0),$$

i.e.

$$d_i = 0 \Longleftrightarrow x_i^l = x_i$$
, and $\min(0, g_i) = 0$ for all $i \in J_2 \Longleftrightarrow (\nabla_{\Omega} f(x))_i = 0$.

With a similar deduction, we obtain

$$d_i = 0 \Longleftrightarrow x_i^u = x_i$$
, and $\max(0, g_i) = 0$ for all $i \in J_3 \Longleftrightarrow (\nabla_{\Omega} f(x))_i = 0$.

This lemma means that if x is not a stationary point, then d in (2.9) is nonzero.

292 QIN NI

4 GLOBAL CONVERGENCE PROPERTY OF THE ALGORITHM

In this section we discuss the global convergence of Algorithm 3.1. We first define

 $S = \{k: \text{ the } k \text{th iteration is successful in Algorithm 3.1} \}$

and the curvature of the differentiable function f along the step d ($d \neq 0$) and based at the point $x \in \Omega$ by

$$w(f, x, d) = \frac{1}{\|d\|^2} [f(x+d) - f(x) - \nabla f(x)^T d]. \tag{4.1}$$

In a similar way we define

$$\tilde{w}(m, x, d) = \frac{1}{\|d\|^2} [m(x, d) - m(x) - \nabla_d m(x, 0)^T d]$$
(4.2)

where $d \neq 0$. It is noted that the function f is assumed to be continuous in Ω and twice continuously differentiable in the interior of Ω in the following lemmas and theorems. Now we have the statement for w(f, x, d) and $\tilde{w}(m, x^k, d^k)$.

LEMMA 4.1 There exist constants $c_3 > 0$ and $c_4 > 0$ such that

$$|w(f,x,d)| \le c_3,\tag{4.3}$$

$$\|\nabla f(x)\|_{\infty} \le c_4,\tag{4.4}$$

where $d \in \mathbb{R}^n$, $d \neq 0$, x, $x + d \in \Omega$.

The proof of this lemma is easy and is omitted.

LEMMA 4.2 There exists a constant $c_5 > 0$ such that

$$0 < \tilde{w}(m, x^k, d^k) \le c_5 \tag{4.5}$$

where $d^k \neq 0$ is the solution of (2.7) at x^k ,

$$c_5 = \frac{c_4 c_0 b_m + \varepsilon_u}{c_0^2 b_m^2}. (4.6)$$

Proof From (4.1) and (2.1) it follows that

$$||d^{k}||^{2} \tilde{w}(m, x^{k}, d^{k}) = (m(x^{k}, d^{k}) - m(x^{k}, 0) - \nabla_{d} m(x^{k}, 0)^{T} d^{k})$$

$$= \sum_{i=1}^{n} \phi(d_{i}^{k}) - \sum_{i=1}^{n} \phi'(0) d_{i}^{k}$$

$$= \sum_{i=1}^{n} (\phi(d_{i}^{k}) - g_{i} d_{i}^{k})$$

$$= \frac{1}{2} \sum_{i=1}^{n} \alpha_{ki} (d_{i}^{k})^{2}$$
(4.7)

where α_{ki} is obtained after simple calculation

$$\alpha_{ki} = \begin{cases} \frac{2g_i}{a_i^k - d_i^k} + \frac{2\varepsilon_i}{(a_i^k - d_i^k)(b_i^k + d_i^k)}, & i \in I_+ \\ \frac{-2g_i}{b_i^k + d_i^k} + \frac{2\varepsilon_i}{(a_i^k - d_i^k)(b_i^k + d_i^k)}, & i \in I_- \end{cases}.$$

From (2.14), (2.15) and (4.4), it follows that

$$a_i^k - d_i^k \ge c_0(x_i^u - x_i^l) \ge c_0 b_m, \quad b_i^k + d_i^k \ge c_0 b_m,$$

and

$$0 < \alpha_{ki} \le 2c_5.$$

If we define

$$\Delta_{km} = \min_{1 \le i \le n} (\Delta_i^k), \quad \Delta_{kM} = \max_{1 \le i \le n} (\Delta_i^k), \quad c_6 = \left(\frac{\max_{1 \le i \le n} (\Delta_i^0)}{\min_{1 \le i \le n} (\Delta_i^0)}\right)^2$$

then it is easy to see from Algorithm 3.1 that

$$\Delta_{kM}^2 \le c_6 \Delta_{km}^2. \tag{4.8}$$

The following statement is somewhat different from general trust region methods, but the proof is similar.

LEMMA 4.3 Consider a sequence $\{x^k\}$ generated by Algorithm 3.1, and assume that there exists a constant $\varepsilon > 0$ such that

$$||h(x^k)|| \ge \varepsilon \tag{4.9}$$

for all k, where $h(x^k)$ is defined by (2.22). Then there is a constant $c_7 > 0$ such that

$$\Delta_{km} \ge c_7 \tag{4.10}$$

Proof From (4.8), lemmas 4.1 and 4.2, it follows that

$$|f(x^{k} + d^{k}) - m(x^{k}, d^{k})| \leq \frac{1}{2} ||d^{k}||^{2} |w(f, x^{k}, d^{k}) - \tilde{w}(m, x^{k}, d^{k})|$$

$$\leq \frac{1}{2} ||d^{k}||^{2} (|w(f, x^{k}, d^{k})| + |\tilde{w}(m, x^{k}, d^{k})|)$$

$$\leq \frac{1}{2} ||d^{k}||^{2} (c_{3} + c_{5}) \leq \frac{1}{2} (c_{3} + c_{5}) \Delta_{kM}^{2}$$

$$\leq \frac{1}{2} (c_{3} + c_{5}) c_{6} \Delta_{km}^{2}$$

$$(4.11)$$

We assume, without loss of generality, that

$$\varepsilon < \min \left\{ 1, b_M \left(\frac{(c_3 + c_5)c_6}{2(1 - \eta_2)\beta} \right)^{1/2} \right\},$$
 (4.12)

294 QIN NI

where β refers to Theorem 2.3, η_2 refers to Step 3 in Algorithm 3.1. In order to derive a contradiction, we assume that there exists a k such that

$$\frac{1}{2}(c_3 + c_5)c_6b_M\Delta_{km} \le r_1\beta(1 - \eta_2)\varepsilon^2 \tag{4.13}$$

where r_1 refers to Step 0 in Algorithm 3.1 and r is defined as the first iteration number such that (4.13) holds.

With Step 3 in Algorithm 3.1 we obtain

$$c_{5}c_{6}b_{M}\Delta_{r-1,m} \leq (c_{3}+c_{5})c_{6}b_{M}\Delta_{r-1,m}$$

$$\leq \frac{(c_{3}+c_{5})c_{6}b_{M}\Delta_{rm}}{r_{1}}$$

$$\leq 2(1-\eta_{2})\beta\varepsilon^{2}.$$
(4.14)

From Theorem 2.3, it follows that

$$f(x_{r-1}) - m(x_{r-1} + d_{r-1}) \ge \beta \min\left(1, \frac{\Delta_{r-1,m}}{b_M}\right) \|h(x_{r-1})\|^2.$$

Without loss of generality, assume that

$$\frac{\Delta_{km}}{b_M} \le 1, \quad k = 1, 2, \dots,$$

Then we have

$$f(x_{r-1}) - m(x_{r-1} + d_{r-1}) \ge \frac{\beta \Delta_{r-1,m} \varepsilon^2}{b_M}.$$
 (4.15)

(3.1), (4.11), (4.14) and (4.15) together means that

$$|\rho_{r-1} - 1| = \frac{|f(x_{r-1} + d_{r-1}) - m(x_{r-1} + d_{r-1})|}{|f(x_{r-1}) - m(x_{r-1} + d_{r-1})|} \le \frac{(c_3 + c_5)c_6b_M\Delta_{r-1,m}}{2\beta\varepsilon^2} < 1 - \eta_2.$$
(4.16)

This implies that $\rho_{r-1} \geq \eta_2$, and therefore $\Delta_{rm} \geq \Delta_{r-1,m}$. Hence, we obtain that

$$\frac{1}{2}(c_3 + c_5)c_6b_M\Delta_{r-1,m} \le \frac{1}{2}(c_3 + c_5)c_6b_M\Delta_{rm} \le r_1\beta(1 - \eta_2)\varepsilon^2 \tag{4.17}$$

which contradicts the assumption that r was the first index satisfying (4.13). Therefore, (4.13) never holds, and

$$\frac{1}{2}(c_3 + c_5)c_6b_M\Delta_{km} > r_1\beta(1 - \eta_2)\varepsilon^2$$

for all k. Hence we obtain

$$\Delta_{km} \geq c_7$$

for all k, where

$$c_7 = \frac{2r_1\beta(1-\eta_2)\varepsilon^2}{(c_3+c_5)c_6b_M}.$$