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ABSTRACT

The contact force of two impacting elastic bodies is widely
nodeled as the parallel combination of a nonlinear spring and
a nonlinear dashpot. The restoring force of the nonlinear
spring can be determined according to the Hertzian contact
law in elasticity, while the model and corresponding
paramcters of the nonlinear damping force have to be
identified through experiments. The current approaches of
damping identification are based on the measured time
histories of both contact force and relative approaching
velocity of two impacting bodies. In this paper, a new
technique is presented for the damping identification on the
basis of measured time history of the contact force only. Hence,
the tough problem of measuring the relative approaching
velocity of two impacting bodies just before impact is removed.
The efficacy test of the new technique is given in the paper
through an example of identifying the impact damping of a
pair of clamped beams.

1 INTRODUCTION

Unavoidable clearances exist in the space structure composed
of elastic rods and beams so that the vibro-impacts between the
flexible components occur when the structure is subject to any

environmental disturbance. It is essential to model the dynamic’

contact force of two elastic components in the impact phase
before any theoretical or numerical analysis is made for the
structural dynamics.

In the early study of modeling the dynamic contact force,
Dubowsky and Gardner (1975) used the linear model of a
spring and a dashpot. They found in the numerical simulations
that the damping force was not equal to zero at the initial
impact moment and the recovering force was negative after the
impact. These numerical results deviated from the
experimental ones because the dynamic contact force was
overly simplified to a linear function of deformation and its
velocity.

In general, the dynamic contact force / includes the elastic
force and damping force as follows

F=kyu" +Dii, (1)

where n=3/2, k, is the stiffness coefficient determined from

the Hertzian contact law (Goldsmith. 1960). u« is the relative
normal deformation of the contact points of the two elastic
bodies, and D is called damping function. A widely used
damping function suggested by Hunt and Grossley (1975)
takes the form

D= pyu”, @)

where the parameter p, is called the damping factor and

should be determined through experiments. This damping
model has been used by many researchers. e.g., Yigit and his
co-workers (Yigit et. al., 1990 and Yigit 1994) used this model
to predict the behavior of a rotating beam colliding
transversally with a fixed surface. Other damping functions
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nay take more or less complicated forms like those suggested
by Lee and Wang (1983).

In principle. the damping factor x, can be identified if the
tume histories of £ and « in Egs. (1) and (2) are measured.
However. it is not easy to measure ¥ because it is the relative
normai deformation in a tiny zone of contact. Hunt and
Grossicy (1975) solved this problem through the use of the
coefficient of restitution denoted by e. In their technique. the
coefficient of restitution e is expressed as a polynomial of V, |

the relative approaching velocity of two bodies just ahead of
impact. and then a relationship between the coefficient of
restitution ¢ and the damping factor u, is derived. Lankarani

and Mikraveshin (1994) solved the problem from the
considerauon of the ecnergy loss during the umpact and found
that the damping factor yields

_ 3k, (1-e)

s ©)

My

[n these approaches. it is necessarv to measure the relative
approaching velocity V7, just ahead of impact. This is

undoubtedly a tough problem because the relative velocity of
two impacting bodies greatly changes within an extremely
short duration of order 10™s.

This paper aims at developing a new approach of identifying
the damping coefficient through the use of measured time
history of the impact force only. For brevity, the idea behind
the new approach is elucidated through the identification of
impact damping of a pair of clamped beams, though it is quite
straghtforward to extend this approach to the identification of
impact damping of more complicated elastic bodies.

2 DESCRIPTION OF IMPACTING BEAMS

Consider a pair of impacting beams shown in Fig. 1. The
system of concern vields the Equation of motion
&w, s

at? ot

[p,.«l, +M,5(x — xc)]
C))

~4
W,

+D

i

P +Fo(x-x,)=0, i=12,
where p A4, is the mass per unit length of beam i, M, the
lumped mass at beam i, C, and D, the coefficients of viscous
damping and elastic stiffness of beam i, w,(x.f) the transverse
displacement of beam i, x, the impact position measured
along the beam from the fixed end, J(x) the Dirac function,

F(r) the contact force during the impact.

E’W
[.

L

Figure 1. A pair of impacting elastic beams

To simplify the expression of the final results. a set of
dimensionless variables and parameters are defined as follows

, x ¥,
T =, y=—, ==
, ST
A, D, A ¢ AL
o= P14 Ly ’ o P15 . f= -
Py Dy P1A, ) )
w, M, (
z, =——, m, = , ¢ =
L p;A L g, Ao
li=12,

where @ =4/D, /p, 4, L* . and then the dimensionless form of
Eq. (§) can be derived

[1+m5 V—Z]'b'-i-c - +—:—"
1 ( ) arl 1 (/3‘[ (7,)/4

+f8(y-€)=0,
6
&z, fz, &'z, ©)
2

[l+m_5(y—£)] =g oo ta

~frs(y-t)=0.

According to the Galerkin approach, z,(y.7) can be

approximated by

¢J,~(_V)
z(yr)=y =
= ,(%)

where ¢, (r) is the j-th modal displacement of the i-th beam.

q,(r). i=12, (7

P (v) is chosen as the mode shape that yields

w;jlu(y) — w;[l +m,.5(y = L})]goy (.y) =0,
f= el d=12,

(8)
in which the primes represent the derivatives with respect to

V. (o,.j(y) can be determined according to the boundary

conditions of the beams and scaled as

1
Lg); (y)dy =1. %)
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Substituting Eq. (7) into Eq. (6). integrating it with respect to
v over the length of the beams, and using Eq. (9) as well as

the orthogonality property of the mode shapes. one obtains

my g, (T)+¢,q,,(T) """’uwz:,q),(f)
i . (10)
My Gy (T)+¢y,q,,(T) +am, w3 ,q, (T)
= E0 =L
where
1 &
m,=m + c, = —

o,(0) 7 ey(8). (1)

whereas the dot over g, represents the derivative with respect
to 7.

[t is well known that the displacements of two beams can not
change within the infinitely short duration of the impact.
Hence. the second and the third terms in Eq. (10) are zero
when Eq. (10) is integrated over the impact duration, namely

[m./ (4, =q;,)+J=0.

. e is A ; (12)
{4y, -q:, )= A =0, J=L. N,

where g, and g, represent the j-th modal velocities of the i-
th beam just before and after impact respectively, and

J=| " fe)de (13)

is the impulse of the impact force. )

In practice. the coefficient of restitution e is widely used to
describe the energy dissipated during the impact. It can be
defined as a ratio of the relative departing velocity to the
relative approaching velocity

_.",(ff.r')-i:(f.r') .
aler )~z (L)

From Eq. (7). Eq. (14) can be re-written as

(14)

e=

N N
PR TEDIH
e=-— (15)
D 4y =D 43
=1 =1
Substituting Eq. (12) into Eq. (15) yields
JA
e= -

V.

38 (16)

where

N
i (‘ w”J, (17)

v, is the dimensionless relative approaching velocity of two
beams at contact points just before the impact
N \

vt551(3.1')—2’2(&1')=ch1—/—zq:’_i : (18)

J=1 =i

3 DETERMINATION OF DAMPING FACTOR
To 1dentify the damping factor in Eq. (2), one can look at the
equivalent form of Eq. (3) for the dimensionless displacements
3k(1-e?)
= —————— 1Y)
¢ 4v, \
where
#OwLn—J e qunvZ L l’,

; s Pam=— (20)
D, D, T wl

it

u

Substituting Eq. (16) into Eq. (19). one obtains a relation
between 4 and (v,.J). To eliminate v, in this relation. it is
helpful to consider the relative motion of two beams during the
impact. From Egs. (7), (10) and (17). it is easy to derive the
equation of the relative motion

ii = —A(ku" + pu"i) 1)
Substituting the approximate expression of # in (Hunt and

Crossley. 1975) into Eq. (21) and integrating it with respect to
u from zero to u,, the maximal indentation shown in Fig. 2.

one has
n+l
gl g _,1(/( L +fiv3J (22)
n+l 3k
o
T
|
o
m
‘ r
12 z T
m
Figure 2. A typical time history of indentation
3 Copyright © 1999 by ASME



In addition. the Hertzian contact law gives the maximal
dynamic contact force

£, = ku, (23)

Substituting Eqs. (16). (19) and (23) into Eq. (22) vields
. . g_/ 2 k , k n+lin .!

vi = JAv, +2) Lﬁ—) ML BT

‘ 2 n+1 ’

=0. (24

By subsututing v, solved from Eq. (24) into Eq. (16). one
obtains the coefficient of restitution

2

€ = e ], (25)
A‘:., X \4‘/:\.-‘ B 2/:\. + (V
where
8k(f, 1 k)"
= i"_)— (26)
(n+ 1) A

Equauon (25) implies that the coefficient of restitution e
depends on both the impulise J and the maximal impact force
[ - The effect of Jand f,, on € in a typical case is shown in

Fig. 3. where e keeps almost unchanged in two regions and
undergoes a step between the two regions. Hence. the widely
used assumption that the coefficient of restitution ¢ is a
constant holds true only in these two regions.

15
0.020

Figure 3. Coetlicient of restitution versus
impulse and maximal impact force

In summary, one can determine the relative approaching
velocity v, just ahead of impact and the coefficient of

<
restitution ¢ from the impulse J and the maximal impact force
/[ - which can easily be extracted from the measured time

history of the impact force. Then, one obtains the
dimensionless damping factor x from Eq. (19). Moreover, if
vhe impact force is recorded in a test of vibro-impacts, a
number of maximal values of impact force and corresponding

impulses can be extracted from the record such that a series of
pairs (e,.v_,), k=1..., m can be determined from Egs. (25)
and (24), so can be the function # in ¢ and v, . If a constant
4 is preferable to simplify the analysis in practice. it can be
estimated as following

3k v (l-ef)
_ k=1

4Z vfk

k=1

u (27)

from (e,.v ). k=1...m by fitting Eq. (19) in the sense of
the least squared approximation.

4 EXPERIMENTS

To check the validity of the new approach, the impact test of
a pair of clamped beams shown in Fig. 4 was studied. The
beams were made of the same steel and each of them was
attached with a semi-spherical impact head made of steel.
respectively. The length L of beams was 0.3m. the width and
the thickness of beams were 0.03m and 0.00075m,
respectively. The distance /A between two beams was set as
0.04m. The radius of the semi-spherical impact head was
0.015m. The dynamic contact force during impact was sensed
by a force transducer with the mass 0.0322kg. The clearance
between the impact head of the left beam and the force
transducer mounted on the right beam was 0.005m. Before the
test of impact damping identification. the modal test for beams
without impact was made. It was found that the vibraton of
each beam was dominated by the fundamental mode of 2.95Hz
and the first order modal damping of single beam was about
0.2Ns/m. '

WI W2
Impact Top  —» —
N | Power
]ﬁ; 5 Supply
P] >C> Pa
| 8 [, s | L
= e A s .
5 Micro . -~ IHP3562|
2 Foreing R
W Transducer H=4cm S
- Az i d
Beamn 1 |=» Beam 2 ‘,Recor bl
N A
i 1
\ Computer |

Figure 4. A schematic of experiment setup

The first test is to measure the time history of the impact
force. The tips of two beams were moved to arbitrary positions
and released all of a sudden so that the free vibro-impacts
occurred. The impact force was recorded as shown in Fig. 5.

o4 Copyright © 1999 by ASME



where the first record is the time history when the sampling
frequency was set to 200Hz and the second is the case of
400Hz. respecuvely. From these records. the reiationship
between the impulse and the maximal impact force was
computed as shown in Fig. 6.

|
3 } Sampling rate 200Hz
|
|
]

fmpact force (N)

1 2 3 4
Time (s)
J,—i Sampling rate 400Hz

2
g
3 ' |
:‘:3 14 " M
g O}eiw it AT
.li T T T T
0.5 1.0 1.5 20
Time (s)

Figure 5. Measured contact force
during vibro-impacts

0.048

0.0364--

The impulse (Ns)

The maximal impact force (N)

Figure 6. Experimental data:
the impulse versus the maximal impact force

From the experimental data in Fig. 6. the impulse J and the
maximal impact force f, were evaluated. Then. they were
substituted into Egs. (25) and (24) so that a relationship
between the coefficient of restitution ¢ and the relative
approaching velocity Vv, was obtained as shown in Fig. 7.
Here. ¢ keeps almost unchanged with vanauon of v . By
means of the nonlinear least squares technique. one can fit the
experimental data and get e=033377v’*"" . Substituting
this expression into Eq. (19). one obtains the dimensionless
impact damping factor as illustrated in Fig. 8.

033557 ‘
il

= A Expenimental data
2 —o—TFitting curve based on
: .
= 033504 A nonlinear least squares
2 5 M
—
f 1 A . SDO0D070
i ’9 e=0.33377¥,
§ 0.33454 % oo
= A o
'8 A 80")0,00&
QO

0.3340 T T

0.00 0.05 0.10 0.15 0.20 0.25

Relative velocity befor impact

Figure 7. Nonlinear least squares fitting curve
based on experimental data

1.00x10 !
7.50x10 10 frossmoere s ................. . S—

Damping factor

2.50x10 10 - \- .................. S cscaeassininiens .................

0.05 0.10 0.15 0.20 0.25

0.00

Relative velocity befor impact

Figure 8. Damping factor versus
relative approaching velocity

The second test is to check the identification result of the
first test. As shown in Fig. 3, the two beams were moved away
from the equilibrium position to positions P, and P, so that
the distance .S was 0.06m. Then, the two beams were released
and the impact force was recorded as shown in Fig. 9. In order
to make a comparison between the measured impact force and
the computed one based on the identified damping in the first

Copyright © 1999 by ASME
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test. the sampie frequency was set to 20kHz. In the numerical
simulation of the impact force. the Young’s modules and the
Poisson rauo of the steel were chosen as 206Gpa and 0.3,
respectively. Figuauon 10 shows good agreement of the
measured impact force with the computed one on the basis of
the idenufied damping. Figuation 10 also shows that very large
crror would be produced if the impact damping was not taken
into account in numerical simulation.

— ‘_,
2 10}
2 3
5
z
o 4
g8 °f
é':_ 'J!" MW‘P“WM

T 0.01 2.02 0.03 0.04

Tune (s)
Figure 9. Measured time history
of single impact force
14
Impact force model:
2 —#—  Experiment
\: —X—  with damping
3 —¥—  without damping
5
B
s .
s B
0.0000 0.0001 0.0002 0.0003 0.0004

Contact time (s)

Figure 10. Comparison between experimental
and simulated impact torces

5 CONCLUSIONS

The approach proposed in this paper enables one to identify
the parameters of the impact damping model of two elastic
bodies through the impulse and the maximum of impact force,
which can be extracted from the measured time history of the
impact force. As two by-products. the coefficient of restitution
and the relative approaching velocity of two elastic bodies can
be obtained from the impulse and the maximum of impact
force so that the efforts to measure these two quantities in
current technique can be avoided.
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COMPUTER AIDED DESIGN FOR VIBRATION ISOLATION
SYSTEMS WITH DAMPED ELASTIC STOPS

H.Y.Huand F. X. Wang

Institute of Vibration Engineering, Nanjing University
of Aeronautics and Astronautics, Nanjing, 210016, China

ABSTRACT

From the viewpoint of nonlinear dynamics, a systematic design approach is proposed for the
vibration isolation systems with a damped elastic stop. The approach consists of three steps.
The first one is to design a slightly damped linear isolation system according to the linear
theory of vibration isolation. Then, the optimal parameters for the damped elastic stop can be
chosen in a region given according to the singularity analysis of the primary resonance. Finally.
the continuation scheme for periodic motion and the interpolated cell-to-cell mapping for the
global behavior of the system are used to test and evaluate the design. The approach
enables one to make use of damping in the stop to attenuate the resonance transmissibility.
while keeping very low transmissibility in the frequency range of vibration isolation.

KEYWORDS: vibration isolation, nonlinear vibration, elastic stop, design, primary

resonance

INTRODUCTION

Elastic stops have been widely used to limit the excessive deformation of the elastic
component of a vibration isolator in engineering. As reviewed in Hu (1996), no theoretical
design approach for this kind of vibration isolators has been reported in archival publications.
partially because the combined restoring force of the elastic component and the stop in the
vibration isolator is no longer linear with respect to the large deformation. In the current

231
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design of the vibration isolator with an elastic stop, the stiffness and damping of the main
elastic component is determined first on the basis of linear theory of vibration isolation. Then.
the elastic stop is empirically designed and modified through a series of tests. Such a design
procedure is not only very expensive, but also dangerous in the test when the nonlinear
dynamics of the vibration isolation system is totally unknown.

The primary aim of this paper is to present a theoretical design approach for the vibration
isolation system with a damped elastic stop from the view point of nonlinear dynamics. As the
system is piecewise linear, 1.e., nonlinear by nature, it is not possible to gain insight into the
complicated dynamics of the system by using any analytical approach. Thus, analytical
approaches and computational approaches are combined to form a systematic and practical
design approach.

MECHANICAL MODEL AND PRIMARY RESONANCE

L

[——>

k,

WG

N

¢ Fsinwt
k ° —

1T

20
, 0O

G
SIS SIS SIS S

NN

S

SO

Figure 1: Mechanical model of the vibration isolation system

Consider the vibration isolation system shown in Figure 1, where a damped elastic stop with
symmetric clearance is mounted so that the combined restoring force in the system is
piecewise linear when |\| the absolute value of the displacement, exceeds the clearance &.

Using the dimensionless time and displacement, as well as a set of dimensionless positive

parameters
T=

== =0 i
| k() ‘ k(\o ku

\

one can write out the differential equation of motion of the system
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where the dot represents the derivative with respect to the dimensionless time r and
¥ <1
gly)= | F (33
(1+ )y —usgn(y), >0
AF o Iyl <1
. 25 0)s Y=L
h(y) = i’ . 4 (4)
2(Co+6 1)y, |}{ =15

are the piecewise linear forces of elastic components and damping, respectively.

To provide the theoretical background for the design, it is essential to study the nonlinear
primary resonance of the system when max}y| > 1. If the parameters ¢,.¢,,u and [ are

small. the primary resonance can be approximated. through the use of average approach. as

y(7)=a(r)cos[Ar + @(1)]. (3)

where a(r) and @(r) yield
: ¥ 1= pa) . f . ,
= e P 3 = 4+ X 4+ —~__3sing, 6)
a=gqla)=o7eose. P e o ? (

ua ;
Jp(a) ="—(2¢, —sin2¢,),
27

q(a)

y 1
= ﬁ[e:ort +¢&,2p, —sin2gp,)], ®, = arccos(—). a>L
T a

i %

From Eqn.6. one has the relationship between the amplitude of the steady state resonance and

the excitation frequency

)2 =0. (8)

0 |~

[p(a)+5(1= 20 + ¢ (@)~ (

To classify the types of the primary resonance, one can focus on the case of «>>1 and let
-=1/a<<1. Using the Taylor expansion of order three with respect to =. one obtains the
bifurcation equation of the primary resonance from Eqn.8 (see Wang and Hu. 1997)

G(z.n,a,.a,) = [(z-2°16)+ 77]2 + az,2 —paf:+a3:2 =0, (9)

where
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o _THEx0) St g Ty (10)
! 2u * Ta(l+o) 4u
n A2-1 8 3
7 4( U a n(l+o) ¢ (

According to the singularity theory. one can prove that Eqn.9 is a universal unfolding of the
normal form [(z—z°/6)+7])* with two unfolding parameters «, and «,. The transition set

of G consists of the following two subsets.

(1) Bifurcation set B = B,UB,UB;:

I 7 oS
2" g, =2 12T .
H:a,_:/“ L Sad Gt S g5 = [-Rek Al — de], (13)
\ (pz-1)z° 2
where
b=zt s2(-2)2 4 2T 2,
2 yo) 2 ;
2o 2 Al-p)z .
_ B % z —pE)E
c=(1 2)[(1 2)+ P ]

It can be proved that the hysteresis set H intersects with the bifurcation set B only once at

the subset B;.

f\-;‘

Figure 20 Transition set of G with respect to unfolding parameters «, and «-
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Now, one can check the possible types of the primary resonance for «, >0, which is the
natural consequence of ¢, >0 and ¢, >0 in practice. Figure 2 shows a typical transition set
of these two unfolding parameters. The transition set divides the right half plane of (a,.a,)
into 4 regions as shown in Figure 2. In each region, the amplitude-frequency curve of the
primary resonance looks the same qualitatively. This figure, thus, enables one to choose an
appropriate combination of unfolding parameters so that the vibration isolation system
possesses the desired qualitative behavior in primary resonance.

It should be emphasized at the end of this section that though the above analysis is made for a
piecewise linear system on the assumption of weak nonlinearity, i.e., the parameters « and

£, are small, the numerical simulations in Wang and Hu (1997) showed that the results were
valid even when x and ¢, were not small.

DESIGN APPROACH

The basic idea of present approach is to design a linear vibration isolation system with very
small damping first, and then an elastic stop with large damping. In the working frequency
range, the slightly damped vibration isolation system has required vibration transmissibility.
Once the vibration isolation system undergoes the primary resonance somehow. both the
elastic stop and the large damping reduce the vibration amplitude and remove the jumping
phenomenon that may occur for a harmonically forced nonlinear oscillator.

3.1 Design of primary system

The vibration isolation system without any stop is referred to as the primary system
hereinafter for brevity. The vibration transmissibility of the primary system yields

2
T 1+ (2&,4) , (15)
(1-22)% +(2&,4)°

where only two dimensionless parameters A and ¢, are to be designed. For a linear vibration

isolation system in traditional sense, the vibration transmissibility in resonance can only be
attenuated by increasing the damping ratio ¢,. For the vibration isolation system with an

elastic stop. however, the task of attenuating the vibration transmissibility in the case of
resonance can be left to the damped stop. Hence, a very small damping ratio ¢, can be chosen

in the design of primary system in order to avoid the system impacting the stop when the
system starts running, see Hu (1996). In the case of ¢ <0.1 and A > 2. the stiffness of the

main elastic component can be determined by using the following approximation of Eqn.15

AeJ121IT. (16)
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3.2 Design of Damped Elastic Stop
3.2.1 Preliminary Design

Given the dimensionless excitation frequency A, the damping ratios ¢, and ¢, the system
parameters to be designed are only x and f. These two parameters appear in the expressions
of unfolding parameters «; and «,, and hence, follow the selection of the two unfolding
parameters. In principle, any parameter combination of «, and «, in region IV in Figure 2
makes sure that the frequency-amplitude curve of primary resonance does not have jumping.
Thus, an arbitrary combination of (a,a,) in region IV can be chosen to determine the
corresponding parameters x and f, provided that the vibration transmissibility is acceptable.

A great number of numerical simulations showed that the stiffness ratio x should not be too
large. As shown in Figure 3, the function of stop is very obvious in the lower frequency range.
The response amplitude goes down very rapidly in the beginning of the increase of 1, and
then changes not very much later until very complicated dynamics happens. For the sinusoidal

excitation of high frequency, the response amplitude has a peak as shown in Figure 4. It is
smaller than the initial value only when u is very large. As a result, an excessive stiffness

ratio u is harmful.
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Figure 3: Maximal displacement Figure 4: Maximal vibration amplitude
versus stiffness ratio when A = 0.5 versus stiffness ratio when . = 1.4

Moreover, the dimensionless excitation amplitude f defined in Eqn.l1 is inversely

proportional to the clearance & when the excitation amplitude F is fixed. So, the clearance &
can be determined from «, . If the clearance is too large, the stop can not be in function. if too

small. the vibration may become nonlinear and then undergoes a sub-harmonic resonance in
working frequency range.

In summary. the stiffness of the stop should not be very large and the clearance should be
appropriate. So. it is necessary to optimize these two parameters, or namely two unfolding

parameters in region IV in Figure 2.
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3.2.2 Optimization for Parameters

Now f, the dimensionless excitation amplitude, is taken as the design variable to look for the
minimal stiffness ratio of an elastic stop such that the requirement for vibration
transmissibility in the primary resonance is met. The constraint conditions for this problem are
as follows:
(a) the parameter boundary where the forced vibration of the system is linear in the
working frequency range;
(b) the minimal stiffness ratio of the stop for given resonance transmissibility at different
excitation amplitudes (or clearances);
(c) the hysteresis set A that guarantees no jumping and no hysteresis in the primary
resonance.
[t is obvious that condition (c) has been given in Eqn.13. Hence, only the first two conditions
are discussed hereafter.

By eliminating u in the expressions of «, and «, in Eqn.10, one obtains

6422 - f?

g T e e = 157
% 4n-/1~g,2(1+o)2a‘ (7

The forced vibration of the system in the working frequency range is linear if the following
inequality holds true

S < Fuae == 2,20 + 204,07 (18)
where A, is the ratio of working frequency to the natural frequency of the primary system.
Given f,,. . the critical value of Eqn.18, a parabola denoted by f ., in Figure 5(b) can be

determined from Eqn.17. This is the parameter boundary of condition (a).

(a) Transition set of unfolding parameters (b) Optimal parameter region
Figure 5: Transition set and optimal parameter regionin (a,a;) plane

when ¢, =001, ¢, =02, A,=275and a,=12 at f =052




