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Abstract

A new two-dimensional, time-dependent and fully nonlinear model is developed to numerically simulate plane wave motions for inter-
nal gravity waves in a4 non-isothermal and windy atmosphere that accounts for the dissipation due to eddy and molecular processes. The
atmosphere has been treated as a well mixed total gas with a constant mean molecular weight. The effects of Rayleigh friction and New-
tonian cooling are applied near the upper boundary of the model to simulate the radiation conditions as well as to act as a sponge layer;
lateral boundaries are periodic over a horizontal wavelength to simulate a horizontally infinite domain. The thermal excitation to initiate
upward propagating waves is spatially localized in the troposphere and is a Gaussian function of time. A time-splitting technique is
applied to the finite difference equations that are derived from the Navier—Stokes equations. The time integration for these highly coupled
equations is performed using an explicit second order Lax—Wendroff scheme and an implicit Newton—Raphson scheme. The wave solu-
tions derived from the model are found to be broadly agreeable with those derived from a Wentzel-Kramers—Brillouin theory.
© 2009 COSPAR. Published by Elsevier Ltd. All rights reserved.

Keywords: Gravity waves; Numerical model; Navier—Stokes equations; Lax—Wendroff scheme; Newton—Raphson scheme; Wentzel-Kramers-Brillouin

theory

1. Introduction

The upper atmosphere ubiquitously exhibits wave
dynamical phenomena (Hines, 1960; Hodges, 1967, 1969;
Lindzen, 1981; Holton, 1982, 1983). Visual manifestations
of atmospheric gravity waves have been achieved through a
wide variety of remote sensing instruments, such as all-sky
CCD airglow imagers (Taylor et al., 1995a,b; Nakamura
et al., 1998; Nielsen et al., 2006), lidars (Wilson et al.,
1991; Mitchell et al., 1991; Whiteway and Carswell,
1995), and radars (Vincent, 1984; Nakamura et al., 1997,
Manson et al., 1998). Atmospheric gravity waves have been
widely studied since the seminal paper of Hines (1960).
They have been recognized to play a crucial role in trans-
porting energy and momentum from the lower atmosphere,

" Corresponding author.
E-mail addresses: yuyong@nuaa.edu.cn (Y. Yu), Michael Hickey@
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where the most energetic wave sources are located, to the
middle and upper atmosphere (Fritts, 1978; Fritts and
Dunkerton, 1984; Fritts, 1984).

One such source, associated with the strong convection
occurring during thunderstorms, has received considerable
attention in an effort to enhance our understanding of the
processes involved. Gravity wave generation by convective
processes has been summarized by Fritts and Alexander
(2003). Essentially, the wave generation process is modeled
either through an obstacle effect (Clark et al., 1986), or by a
mechanical oscillator effect (Fovell et al., 1992), or as a
thermal excitation (Alexander et al., 1995; Pandya and
Alexander, 1999; Piani et al., 2000). The latter mechanism,
associated with the latent heat release accompanying con-
vection, has particularly been explored through numerical
modeling. Not only are planetary scale waves generated
through latent heat release (Manzini and Hamilton,
1993), but also smaller scale gravity waves are produced
(Walterscheid et al., 2001; Beres et al., 2004; Alexander
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et al., 2004). Direct observational evidence for the latent
heating mechanism of wave generation has been provided
by Mclandress et al. (2000).

Confirmation of model predictions by observations is
useful to the understanding of the source processes. Waves
of importance to the upper mesosphere have amplitudes
that are typically below the threshold of observability near
the source region. In this case a comparison between obser-
vations and modeling is best performed for the faster waves
that reach the mesopause region. Observational techniques,
such as ground-based airglow imaging, can provide the
model-needed information regarding the directions of wave
propagation, the wave extrinsic periods and their horizon-
tal wavelengths (Walterscheid et al., 1999; Hecht et al.,
2001). Combined with models describing the interaction
of waves with chemistry and the associated airglow emis-
sions, such measurements provide a useful way of deter-
mining the gravity wave amplitudes, momentum fluxes,
and energy fluxes (Nakamura et al., 1993; Swenson and
Gardner, 1998; Gardner et al., 1999; Hickey, 2001; Hickey
and Yu, 2005). Radar observations allow the momentum
flux to be calculated using the method described by Vincent
and Reid (1983) or by correlating the horizontal and verti-
cal velocity (Fritts and Yuan, 1989).

In spite of the desire to reconcile models with observa-
tions the modeling itself, using advanced computational
techniques to simulate the wave dynamical processes, is a
valid scientific approach to help our understanding of wave
generation and propagation (Lindzen, 1970; Fovell et al.,
1992; Alexander et al., 1995). It has become more useful
with recent computational capabilities with improvements
in processor speed, increased memory and more efficient
numerical algorithms. For instance, using the comprehen-
sive SKYHI general circulation model (GCM), Manzini
and Hamilton (1993) investigated the propagation through
the lower and middie atmosphere of equatorial planetary
waves and inertia-gravity waves excited by latent and con-
vective heating. Their studies reconfirmed that latent and
convective heating are important wave sources, and these
wave sources were indicated to be a dominant mechanism
in producing equatorial wave activity. In another case,
Alexander et al. (1995) studied convectively forced meso-
scale atmospheric gravity waves. High frequency oscilla-
tions were produced in the stratosphere above the
simulated storm. They showed that their modeled gravity
wave vertical wavelengths exhibited a surprisingly strong
correlation with the heating depth. Spectral analysis was
applied by Pandya and Alexander (1999) to further investi-
gate the stratospheric gravity waves above convective ther-
mal excitation. For both linear and nonlinear forcing, their
simulations clearly revealed a strong resemblance between
the dominant frequency of the stratospheric gravity waves
and the oscillating frequency of the time-varying tropo-
spheric thermal excitation. As we mentioned above, model
simulations allow researchers to correctly interpret obser-
vational data, predict unobserved wave events, and acquire
further understanding of unexplored physiFal processes

(Hickey et al., 1997, 1998; Walterscheid and Schubert,
1990; Walterscheid et al., 2001; Snively and Pasko, 2003,
2005; Snively et al., 2007; Yu and Hickey, 2007a,b,c).

The purpose of this paper is to describe a new two-
dimensional model that is based on the Navier—Stokes
equations and used to simulate the propagation of atmo-
spheric gravity waves. Briefly, the model describes the tem-
poral evolution and spatial distribution of non-hydrostatic,
nonlinear gravity waves propagating within an inhomoge-
neous and compressible atmosphere. The application of
this model to the thermal ducting of acoustic-gravity waves
m multiple ducts (in the stratosphere, mesosphere and
lower thermosphere) has been described by Yu and Hickey
(2007a,b). The extension of these studies to include the
effects of background winds has been described by Yu
and Hickey (2007c). Here, the wave solutions provided
by the model will be compared to those derived from a
WKB approximation. The source (and wave) amplitude
in the model will be kept small in order to facilitate a mean-
ingful comparison with the results from the WKB approx-
imation. Some expected differences between the results will
be described in Section 4.

The layout of this paper is as follows. The model equa-
tions and the major algorithms and solution techniques
used are described in Section 2. The results, provided in
Section 3, will include a simulation of a Gaussian wave
packet propagating upward through a windy and non-iso-
thermal atmosphere. A comparison with the WKB approx-
imation is also described in this section. A discussion and
conclusions are presented in Sections 4 and 5, respectively.

2. Model formulation
2.1. Governing equations

The governing equations solved in the model are the
Navier-Stokes equations and the equation of state for an
ideal gas. These highly coupled equations include dissipa-
tion due to eddy processes and molecular processes (viscos-
ity and thermal conduction) and are used to describe time-
dependent, two-dimensional, fully compressible, non-
hydrostatic plane wave motions in a non-isothermal atmo-
sphere and in the presence of background winds (Yu and
Hickey, 2007¢). The Coriolis force (owing to the rotation
of the Earth) (Hickey, 1988a, 1988b) and ion drag (Yu
and Hickey, 2007b) are negligible for the high frequency
gravity waves we are studying here and so are neglected.
Composition effects in the thermosphere associated with
an altitude variation of the mean molecular weight (Walt-
erscheid and Hickey, 2001) are also neglected. The atmo-
spheric regions we are interested in are below the
thermosphere and so can be treated as a well mixed single
constituent gas. These topics are discussed in more detail in
Section 4.

The following equations describe conservation of mass
(Eq. (1)), momentum (Eq. (2)) and energy (Eq. (;3)), the def-

f
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inition of potential temperature (Eq. (4)), and the ideal gas
equation of state (Eq. (5)):

Dp
= oV -p=0,
5 TV e (1)

Py NP pg =NV (poV) = V- (pn V) + pKgy = 0,

)

pee s 4 pY v~V (4YT) ~ LY - (0, 90) + eopKnT

= pc,(Q; + O,), (3)

0=T/I= T(’zf’ﬂ) (4)
. P

p=257. (5)

The model domain is in the x—z-plane and ¢ is time. The
model extends vertically from the ground up to the altitude
of 250 km and spans horizontally one horizontal wave-
length allowing periodic boundary conditions to be
imposed. v i1s the normal velocity vector with x (positive
eastward) and z (positive upward) component u and w,
respectively; p is the atmospheric neutral density; p is the
atmospheric pressure; g is the acceleration due to gravity;
v is the molecular viscosity; 7, is the eddy momentum dif-
fusivity; ¢, and ¢, are the specific heats at constant volume
and constant pressure, respectively (we accidentally used c,
instead of ¢, in the fourth term of Eq. (4) in Yu and Hickey
(2007b) and now it 1s used correctly); Q; is the atmospheric
heat source introduced to balance the thermodynamic
energy in the initial mean state; Q,, is the wave thermal
excitation; T is the atmospheric temperature; 4, is the
molecular thermal conductivity; x, is the eddy thermal dif-
fusivity; M is the mean molecular weight; and Kz and Ky
are Rayleigh friction and Newtonian cooling coefficients,
respectively. The operator D/Dt = 8/t + v - ¥V is the sub-
stantial derivative, where v(x, z, ¢) 1s the total velocity vector
(mean plus perturbation). () is the potential temperature, I7
1s the exner function, py, = 1000 mbar (the over-bar repre-
sents a horizontal average) is the reference pressure on the
ground, x = Rlc,, R = R*/M, and R" is the universal gas
constant. Other relevant parameters will be discussed in
Appendix A and can also be found in Walterscheid and
Schubert (1990), Hickey et al. (2000, 2003) and Hickey
and Yu (2005).

2.2. Computational algorithms

The model equations are first rewritten as partial differ-
ential equations in a flux preserved form and then are inte-
grated with respect to time using a time-splitting technique.
The first half integration uses an explicit, second order
Lax-Wendroff scheme for the convective part of the equa-
tions. The second half integration is performed iteratively
using a Newton-Raphson scheme for the remainder of
the equations. The masy continuity equation and the hori-

zontal momentum equation are solved using the second
order Lax—Wendroff scheme alone, while the thermody-
namic energy equation and the vertical momentum equa-
tion use both schemes.

In order to demonstrate this approach, we use as an
example the mass continuity equation (1), which is rewrit-
ten as

op QOpu Opw
R T

= i), (6)

and s; = 0. This flux preserved form of the mass continuity
equation will be solved at each time step by an explicit, sec-
ond order Lax—Wendroff scheme alone (discussed later).
The same method, when applied to the horizontal momen-
tum equation and using Eq. (6), allows us to rewrite Eq. (2)
as

Opu Opuu Opuw
o T o o

+ 84 = 0. (7)

Here we provide an expression for the s4 term that can be
derived from the momentum equation (2),

op o*u  du
v pKru — p(v + ﬂe)(é;j+'é§)
opv  Opnm, \ Ou opv  Opn,\ Qu
(@x x ax)ax (az Y% )% ()

We emphasize again that the finite difference equations (6)
and (7) will be solved by an explicit, second order Lax—
Wendroff scheme alone at the beginning of each time step.

The explicit, second order Lax—Wendroff scheme used
here is a commonly used method described in standard
books of computational fluid dynamics. We suppose that
there 1s a general flux preserved form for each equation
written as '
0® OoF oG
ar+ax+az+5“0’ (9)
where @ = {p, p, pw, pu}, F= {pu, pu, pwu, puu}, G=
{pw, pw, pww, puw} and S = {s,, 52, 83, 54] that depends
on each individual equation. The S term 1s commonly re-
ferred to as the source (if negative) or sink (if positive).
The @ term is the primary variable to be solved and the
F and G terms are the horizontal and vertical flux term,
®u and ®dw, respectively. If we take a Taylor expansion
for the primary variable ¢ at time step » + 1 that is repre-
sented as @,., it should look like the following:

00 AL 'O

D, =D, + At — +—
-1 ”+ at+ 2 6[2

+ (ALY + -, (10)

where @, is the primary variable @ at time step n, and Af is
the finite time step. The explicit, second order Lax—Wendr-
off scheme that we apply neglects the third (Ar’) and the
higher order terms. The second derivative term o*@/or
can be obtained from the first derivative term 0®/0t in
Eq. (9) as 1:
f
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’®  d [OF\ 0 [OG\ S .
orr  Ox \ Ot 0z \ 0Ot o’ ()

so that the primary variable @ can be solved at each succes-
sive time step once the initial condition is established. In
our simulation, we have included initial tendency.

The vertical momentum equation is also rewritten in a
general flux preserved form following an approach similar
to that just applied to the horizontal momentum equation
(7). We re-emphasize that a time-splitting technique is
applied to the vertical momentum equation and also to
the thermodynamic energy equation. In the thermody-
namic energy equation (3), we use Eq. (4) to eliminate
the potential temperature 6, and then use Eq. (5) to elimi-
nate the atmospheric tlemperature 7 by replacing it with the
atmospheric pressure p. Both the vertical momentum equa-
tion and the thermodynamic energy equation are split into
two parts of the form
0P
o
where /; represents those terms evaluated implicitly by the
Newton-Raphson scheme, and f, represents those terms

evaluated explicitly by the Lax-Wendroff scheme.
For the vertical momentum equation, f, is represented as

Ji(®) + fe(P). (12)

Opw Odpwu  Opww

+ e f 53 =0 13
o TTax e THTH -
where the explicit representation of the s3 term is derived
from the momentum equation (2) and provided below in

a form similar to (8):

dw  O'w
s3 = pKrw — p(v + 1,) (arz + azz)

(30, o\ (o
Ox ax / Ox

opn,\ Ow
RRE ) oz W4

All the terms in Eq. (14) will be included in the second or-
der Lax-Wendroff scheme to be solved. We exclude the
hydrostatic balance terms (0p/0z — pg) from Eq. (14) be-
cause they will be included in the implicit term f; and will
be iteratively solved by the Newton-Raphson scheme.
For the thermodynamic energy equation, f, is repre-
sented as
Op OCpu Opw .
-a—[' v E + "éz_f + 85y = 0. (15)
The s, term is derived from the thermodynamic energy
equation (3) and provided as

Ou pM
eyt - 05 (520)

g @)} o

where 7 is the ratio of the specific heats (¢,/c,). We include
(y — 1)pOw/0z in the f; term that will be evaluated implicitly
by the Newton-Raphson scheme. The diffusion terms are
' also included in the f, term that will be solved by the impli-

cit Newton—Raphson scheme, because they eliminate
abruptly changing solutions and so help reduce the compu-
tation time required to achieve convergence. We set up a
suitable tolerated error to iterate in the implicit Newton—
Raphson scheme to make sure the same order accuracy be-
tween the implicit and explicit scheme. A detailed descrip-
tion of the implicit Newton—Raphson scheme is provided
by Press et al. (1996).

We use the traditional Courant-Friedrichs—Lewy stabil-
ity criterion to set time steps for the proposed algorithms.
The requirement for the time and space step is
"i‘x“ <1 (17)

The horizontal and vertical grid spacing (Ax and Az) used
in the proposed algorithms are 0.5 km and 1.0 km, respec-
tively. The time step (A¢) 1s 0.7 s. They satisfy the CFL con-
dition (17) even for the fast acoustic wave (about 300 m/s).

The primary wave variables (p, p, pw, pu) are solved
using a staggered grid technique similar to that described
by Taylor (1984). In this technique the atmospheric density
(p) and pressure (p) or temperature (7) are carried on one
grid system, while the horizontal and vertical mass flux
term (pu and pw) are computed on another grid system that
is purposely staggered with respect to the former by a half-
unit spatial step both in the horizontal and vertical direc-
tion. Equivalently, this means that the atmospheric density
and pressure (or temperature) are carried at the center of a
computational unit box, while the horizontal and vertical
mass flux term (pu and pw) are computed at the midpoints
of the lateral and vertical boundaries of a computational
unit box, respectively. A similar application has been
described by Walterscheid and Schubert (1990). A periodic
boundary condition applies to the lateral boundaries to
simulate a horizontally infinite domain. On the ground
the vertical velocity is set to zero to ensure that there are
no wave fluxes through the lowest boundary.

3. Model simulations

The simulations use thermal forcing described as a sinu-
soid in time modulated by a Gaussian function in time and
in the vertical coordinate. These simulations are apt to
mimic what might be expected by a thunderstorm source
of waves. The thermal forcing in the thermodynamic
energy equation (3) is described as a traveling sine wave
with an amplitude modulated by a Gaussian function in
the vertical coordinate.

3.1. Gaussian wave packet simulations

In general any reasonable combination of wave param-
eters can be input to the model. Here, a wave thermal exci-
tation with a primary period of 6.276 min and a horizontal
wavelength of 35 km is chosen that are based on previous
applications of the full-wave model to wave ducting (Hecht
et al., 2001). These earlier results obtained with the full-
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wave model indicate that this wave mode is strongly ducted
in the lower thermospheric thermal duct. Our purpose of
providing a specific wave source is trying to test the model
sensitivity and to see whether or not the model could char-
acterize the wave propagating properties correctly within
the linear gravity wave theory. This wave thermal excita-
tion 1s a sinusoidal function in the horizontal direction
and 1s periodic over the domain. It is characterized by a
Gaussian envelop of half-width Az = 0.8 km, centered ver-
tically at £ =8 km, and a Gaussian envelop of half-width
At = 6.276 min, centered temporally at t= 37.656 min.
The magnitude of the thermal forcing is maintained small
enough (107> K/s) to ensure that the gravity wave ampli-
tudes remain linear at all heights. The thermal excitation
1s expressed analytically as

O, (x.z,1) = 10 *exp(-—(r — 1)°/2A8)

x exp(—(z — &)*/2A2%) sin(kex — wot). (18)
The thermal forcing frequency and the horizontal wave
number are given by my=2n/6.276 min and ky = 2n/
35 km, respectively. Positive k, represents eastward propa-
gating waves.

The thermal excitation and the fractional temperature
perturbation at a horizontal position of x = 17.25 km and
at an altitude of z = 8 km (the height of maximum wave
forcing) are shown in the right panel of Fig. 1. The thermal
excitation and the resulting fractional temperature pertur-
bation vary with time in a similar way, with the thermal
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excitation leading the fractional temperature perturbation
by a phase of approximate n/2 (about 1/4 of the forcing
period of 6.276 min). The wave excitation has a primary
period of about 6.17min and is centered at about
36.17 min; the fractional temperature perturbation has a
primary period of about 6.33 min and is centered at about
37.67 min. Therefore there is a delay of approximate 1/4
wave major period (6.276 min) between the effect (the frac-
tional temperature perturbation) and the cause (the ther-
mal excitation). When the thermal forcing is a maximum
the fractional temperature perturbation is zero, and when
the thermal forcing is zero the fractional temperature per-
turbation is a maximum.

In the left panel of Fig. 1, we plot the zonal wind (upper
x-axis, positive eastward) as a function of altitude. We also
plot the thermal conductivity and the momentum diffusiv-
ity that will be discussed later in Appendix A. The atmo-
spheric mean temperature that determines the Brunt-
Viisild frequency and the atmospheric mean density are
prescribed using the MSIS-E-90 model (Hedin, 1991) for
a date of 1993 January 15, a location of latitude N 18.5°
and longitude 0.0°, and a local time of 2200 h. The zonal
wind structure is prescribed using the Horizontal Wind
Model (HWM93) (Hedin et al., 1996) for the same geo-
physical parameters.

As shown in the left panel of Fig. 1, the zonal wind has a
positive wind shear (dU/dz > 0) in three regions: from z =
toz=~12.5km, from z= ~43.5km to z = ~72.5 km, and
from z = ~98.5 km to z = ~117.5 km. The zonal wind also

Wave thermal excitation
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Fig. 1. Molecular thermal conductivity (4,,/pc,, dash-dot curve), momentum diffusivity (v + 1., solid curve) and the zonal wind (U, dot curve, positive
eastward) are shown on the left panel. The thermal excitation (Q, dash—dot curve) and the temperature fluctuation (7'/Ty, solid curve) at z=8 km are

shown on the right panel. 4
|
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has a negative wind shear (dU/dz <0) in three regions:
from z=~125km to z=~43.5km, from z=~72.5km
to =~985km, and from z=~1175km to
z=~133.5 km. From z = ~133.5 km the zonal wind con-
tinues to increase up to the model upper boundary. The
wave packet propagates upward and eastward from the
source (at z = 8 km) with a horizontal phase speed of about
92.95m/s (V, = wp ko). At altitudes of about 12.5 km,
72.5 km and 117.5 km, where the zonal wind is a local east-
ward maximum, the wave experiences a tail wind. In this
case the wave is Doppler shifted to lower frequencies
according to the equation Q = w — k- U, where Q is the
Doppler shifted frequency, @ is the extrinsic frequency
observed on the ground, & is the horizontal wave number
and U is the zonal wind. At altitudes of about 43.5 km
and 98.5 km where the zonal wind reaches a local westward
maximum, the wave experiences a head wind and is Dopp-
ler shifted to higher frequencies.

Figs. 2-5 show the wave fluctuations in the atmospheric
density, temperature, horizontal velocity and vertical veloc-
ity at four different times of about 47 min, 1h 9min, 1 h
31 min, and 5 h 48 min. The scaling in these four figures
is not identical. Fig. 2 is a snapshot of the fractional density
perturbation p'/po (unit: %) at 47 min and 4 s. Regions of
maximum tail wind and head wind are shown in this figure
by the horizontal dashed lines. In the tail wind regions
where the wave is Doppler shifted to lower frequencies
the local vertical wavelength decreases, while in the head
wind regions where the wave is Doppler shifted to higher
frequencies the local vertical wavelength increases. This
behavior is expected based on the dispersion equation for
atmospheric gravity waves (Hines, 1960).

Similar wind shear effects described in Fig. 2 can also be
seen in Fig. 3 with the fractional temperature perturbation
T’ /Ty (unit: %) at 1 h 9 min. Again, in the tail wind regions
where the waves become slower the vertical wavelengths
are shorter, whereas in the head wind regions where the
waves become faster the vertical wavelengths are larger.

Fractional Density Perturbation p'/p, (%)  0:47:04

Altitude (km)
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Fig. 2. A spatially localized fractional density perturbation p'/py (%) is
shown at a simulated time of 47 min and 4 s.
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Fig. 3. A spatially localized fractional temperature perturbation 7"/T (%)
is shown at a simulated time of 1 h, 9 min and 2s.
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Fig. 4. A spatially localized horizontal velocity perturbation ' (ms™') is
shown at a simulated time of 1 h and 31 min.
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Fig. 5. A spatially localized vertical velocity w (ms™') is shown at a
simulated time of 5 h, 48 min and 19 s.

In Fig. 4 we show the horizontal velocity perturbation at
1 h and 31 min. The waves experience a local maximum
headwind at ~98.5 km altitude. Above ~105 km the zonal
wind becomes eastward and the waves experience a tail
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wind. The eastward winds first increase with increasing alti-
tude (dU/dz >0) and a maximum eastward tailwind
occurs at ~117.5 km altitude. At greater heights the east-
ward wind decreases (dU /dz < 0) but it remains eastward.
Hence the waves experience a weaker tailwind at heights
above 117.5 km. At these greater heights the vertical wave-
length (~25 km) is therefore greater than that at 117.5 km
altitude (~15 km). This can be seen in the figure by com-
paring the slopes of the lines of constant phase. This behav-
ior is also expected based on the dispersion equation for
atmospheric gravity waves (Hines, 1960).

In Fig. 5 we show the vertical velocity at ~5 h, 48 min.
In the upper region of the model (z > 133.5 km altitude),
the wind shear is positive. By ~185 km altitude the zonal
wind speed has increased sufficiently to produce a critical
level where the zonal wind speed equals the horizontal
phase speed (~92.95 m/s) of the primary wave (see the left
panel of Fig. 1). At the critical level the waves cease their
upward propagation because of their zero intrinsic (Dopp-
ler shifted) frequency, and the wave associated momentum
and energy are absorbed by the mean flow.

The velocity correlation «'w/, once averaged («'w’) (unit:
m? s~ 2, the momentum flux per unit density), represents the
vertical flux of the horizontal momentum carried by the
upward propagating waves. Fig. 6 is a snapshot across
the spatial grid at a time of ~47 min for a spatially local-
ized ¥'w'. This second order, nonlinear quantity shows

how the wave propagates upward in the atmosphere and
it has two maxima within a horizontal wavelength. The
kinetic energy density («2 + w2)/2 (unit: J kg™', the energy
per unit mass) can be used to estimate the kinetic energy
carried by the waves. Fig. 7 is a snapshot across the spatial
grid at a time of 47 min and 4 s for a spatially localized
(u” + w?)/2. This second order, nonlinear quantity also
shows how the wave associated kinetic energy propagates
upward in the atmosphere and it also has two maxima
within a horizontal wavelength. The kinetic energy
(Fig. 7) and the horizontal momentum (Fig. 6) both exhibit
similar propagating characteristics.
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Fig. 6. A spatially localized velocity correlation w'w' (m?s™?) is shown
across the spatial grid at a simulated time of 47 min and 4 s.
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Fig. 7. A spatially localized kinetic energy density (w> + w?)/2 Jkg™') is
shown across the spatial grid at a simulated time of 47 min and 4 s.

3.2. Analytical comparisons

The dispersion relation formulated by Hines (1960)
involves thermal and wind effects in a WKB approximation
(Einaudi and Hines, 1971), and can be solved for the
square of the vertical wave number (m?) thus

m? = E(NFZ— 1) ————(“’5(;92). (19)

Here Q = w — k- U is the intrinsic (Doppler shifted) fre-
quency, w is the extrinsic (ground based) frequency, £ is
the horizontal wave number vector, U is the horizontal
mean wind vector. The effects of wind shear are implicitly
included in Q due to its dependence on U. The sound speed
C = /ygH, where y is the ratio of the specific heats, g is the
gravitational acceleration, H = RT /g is the atmospheric
scale height, and where R is the gas constant, and 7 is
the atmospheric temperature (also a function of altitude).
N is the Brunt—Viisild frequency. The effects of thermal
gradient are also implicitly included in the definition of
the non-isothermal Brunt—Viisdld frequency (Fritts,
1984), N* = (0T/0z+ g/c,)g/T, where c, is the specific
heat at constant pressure. w, = \/yg/4H is the acoustic
cutoff frequency.

The wave packet energy is transported at the wave
group velocity (002/dm), which can be derived using Eq.
(19) to give

9@ B mQ?
om  (Q)C* - I°N?)’

In Table 1, we calculate the vertical group velocity as a
function of altitude from z = 15.5 km to z = 39.5 km using
Eqgs. (19) and (20) for the same mean state conditions as be-
fore. It is important to note that the phase of a freely prop-
agating gravity wave is downward for upward energy
propagation, which means that the vertical wave number
m is negative. In this calculation, we specify the parameters
as follows: @ =2m/(6.276+60) (s™'), k= 2m/(35%1000)

(20)
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Table 1

The vertical group velocity derived from a WKB approximation.
Altitude Temperature Zonal wind Vertical group
(km) (K) (m/s) velocity (m/s)
14.5 203.83

15.5 201.58 11.592 39.087
16.5 201.20 10.390 40.196
$75 202.22 8.929 40.881
18.5 204.19 7.311 41.762
19.5 206.67 5.639 42.865
20.5 209.20 4016 44014
21.5 211.54 2.542 44993
2.5 213.72 1.321 45.713
23.5 215.76 0.429 46.171
24.5 217.71 —0.164 46.434
255 219.61 —0.536 46.581
26.5 221.50 -0.762 46.682
21.5 223.45 -0.920 46.783
28.5 225.49 —1.084 46.919
29.5 227.69 -1.332 47.135
30.5 230.11 -1.737 47.453
315 232.81 —2.283 47.875
325 235.88 -2.937 48.306
33.5 239.13 —3.679 48.634
345 242.34 —4.487 48.843
35.5 245.48 —5.342 48.940
36.5 248.52 —6.222 48.882
375 251.44 -7.107 48.606
38.5 254.20 -7.951 48.033
39.5 256.77 —8.749 47.115
40.5 259.13

m™), £=9.793 (m?s7'), R=287290 (Jkg 'K,
cp, =1004.0 J kg ' K'), and y = 1.40.

In order to compare the model simulations with the
results derived from the linear gravity wave theory, we
resolve the total perturbation energy flux of the eastward
propagating waves over altitude and time. The total per-
turbation energy flux plotted in Fig. 8 is also defined as
Fr =pw + p,Uuw'w (Hines and Reddy, 1967; Hickey
and Brown, 2002; Yu and Hickey, 2007c). In an atmo-
sphere free of dissipation a form of the total perturbation
energy flux above is a conserved quantity for gravity
waves propagating through regions of wind shear. The
contribution of the momentum flux (e.g., p,Uw'w) can
be thought of as a consequence of a coupling between
the waves and the mean flow (Hines and Reddy, 1967).
This form of the total perturbation energy flux, which is
influenced by a horizontal zonal wind in an altitude-time
domain, shows that how fast the wave energy can propa-
gate upward into the upper atmosphere. This color con-
tour plot demonstrates the direction of the propagating
wave energy with green color indicating upward direction
and blue color indicating downward direction. In particu-
lar, we color the atmospheric region in the stratosphere
largely below about 39.5 km altitude with yellow to eluci-
date the propagation of the main wave packet during the
first 50-min simulation. We partition this stratospheric
region into two parts, one is above the 19.5 km altitude
and below the 39.5 km altitude, and another one is below
the 19.5 km altitude.
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Fig. 8. The total perturbation energy flux Fr = pw + p,Uw'w is shown
for the eastward propagation. Two horizontal reference lines (red, dot—
dot), respectively, locate at z=19.5km and z=39.5km; two vertical
reference lines (red, dot—dot), respectively, locate at ¢ =42.85 min and
t = 51 min. A red arrow points at the point (¢ = 51 min, z = 39.5 km) and
crosses through the point (¢ = 42.85 min, z = 19.5 km). (For interpretation
of the references to color in this figure legend, the reader is referred to the
web version of this paper.)

A red arrow is used to represent the vertical group veloc-
ity of the upward propagating wave energy. According to
the simulations in Fig. 8 this red arrow crosses through
two points (one at 7 = 42.85 min, z = 19.5 km, and another
one at ¢t = 51 min, z = 39.5 km), giving a modeled vertical
group velocity of about 40.9 m/s. In Table 1 we present
the vertical group velocity that is based on the linear grav-
ity wave theory (Eq. (20)). Below 19.5 km altitude the aver-
age vertical group velocity is about 41.0 m/s. However,
between 19.5 km and 39.5 km altitude the vertical group
velocity based on the linear gravity wave theory is
~47 m/s, which is higher than the simulated vertical group
velocity (~40.9 m/s) in this stratospheric region. We attri-
bute this discrepancy largely due to the partial reflections
of the higher frequency wave components of the packet
by the evanescent region at the upper stratosphere. These
partial reflections can be seen in the simulation results of
Fig. 8 between about f=53min and 7= 64 min and
between the altitudes of 19.5 km and 39.5 km (blue down-
ward reflections). Because the higher frequency compo-
nents of the packet are also the faster components, their
partial reflections remove them from the upward propagat-
ing packet and hence reduce the vertical group velocity of
the main wave packet. The vertical group velocity based
on the linear gravity wave theory (Table 1) reasonably
describes the freely propagating waves below 19.5 km alti-
tude, while that based on the model simulations more rea-
sonably describes the freely propagating and ducting waves
between 19.5 km and 39.5 km altitude.

4. Discussion

In this study we deliberately chose the amplitude of the
wave thermal excitation in the model to be small so that the
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nonlinear terms in the governing equations would be negli-
gible. At higher altitudes, the upper atmosphere (particu-
larly for the thermosphere) is diffusively separated and it
behaves as a multi-constituent gas. In contrast the atmo-
spheric region below the thermosphere is considered to
be well mixed, and behaves as a single constituent gas with
constant molecular weight up to the turbopause (near
105 km altitude). The composition and specific heats of
the total gas can be significantly different between the lower
and upper atmosphere, and the parcel buoyancy can be sig-
nificantly affected (Walterscheid and Hickey, 2001). These
effects are beyond the scope of our present study, but we
note that they may be important for the characteristics of
the propagating waves discussed in this paper.

In an atmosphere with slowly varying background tem-
perature and winds, a ray tracing method could be used to
model the path taken by the propagating gravity waves.
This ray tracing theory can predict where the internal grav-
ity waves are propagating and breaking. Its successful
atmospheric applications can be found, for example, in
the GROGRAT model of Marks and Eckermann (1995)
and Eckermann and Marks (1997), and the model of Walt-
erscheid (2000). The GROGRAT model has been used
extensively by Eckermann and colleagues to interpret satel-
lite measurements of wave motions. We developed our
present model based on our planned future science pro-
jects. For instance, calculating the nonlinear forcing and
the temporal evolution of the mean state and simulating
the interaction between dynamics and chemistry are more
easily accomplished with this newly developed model.

5. Conclusion

A numerical modeling study of atmospheric gravity
wave propagation and trapping has been performed using
a relatively new time-dependent model. Group velocities
derived from the model with small amplitude forcing were
found to compare favorably at lower altitudes with those
derived from a linear, WKB based dispersion equation.
Differences at greater altitudes were attributed to dissipa-
tion and to partial reflections of larger vertical wavelength
(faster) waves that are not well described by a WKB
approach (Einaudi and Hines, 1971).

The model also revealed wave ducting in the middle
atmosphere and lower thermosphere. The anisotropy due
to mean horizontal winds was shown to be significant
and affected vertical variations of phase in a predictable
way. Based on the model applications performed in this
paper and in some previous studies (Yu and Hickey
2007a.b,c), we believe that the newly developed model
can properly characterize the upward propagation of atmo-
spheric gravity waves into the upper atmosphere. The time-
dependence and its non-linearability supported by the
model provide a broad opportunity to explore some unu-
sual wave events (for example, the mesospheric bore),
and to interpret ai*rglow observations more objectively in

the case of coupling this dynamical model with an airglow
chemistry model.
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Appendix A. Model coefficients

The molecular diffusion coefficients used in the govern-
ing equations are taken from Rees (1989). In a dissipative
atmosphere, we apply molecular process involving molecu-
lar kinematic viscosity v (units in mZs™ "), which is
expressed numerically as (Hickey and Yu, 2005)

 [Ny] x 3.43 4 [0,] x 4.03 + [O] x 3.90

(AR A o) R

x 1077,

(A1)

Brackets [] in the equation denote the density of the major
or minor species and they are functions of altitude. py is the
atmospheric mean density and 7 is the atmospheric mean
temperature, both of them are also functions of altitude.
Another molecular process is due to the molecular thermal
conductivity, 4,, that is also expressed numerically as
(Hickey and Yu, 2005)

[N,] x 56.0 + [O,] x 56.0 + [O] x 75.90
(IN2] + [02] + [O])
% (To)"® x 107,

Ay =

(A2)

and it[is plotted in the left panel of Fig. 1 as 4,,/pc, (units in
m>s ).

The nominal eddy diffusion coefficients are based on a
profile due to Strobel (1989) and have large values in the
mesopause region. The eddy momentum diffusivity maxi-
mizes with a value of 100 m*s™" at 90 km altitude, and
the Prandtl number is 3. This maximum value for the eddy
diffusivity is comparable to values derived from radar infer-
ences of turbulent energy dissipation rates (Hocking, 1987).
Similar values have also been derived from two years of
continuous radar measurements near Adelaide, Australia
(Hocking, 1988). A small value of eddy diffusivity
(0.1 m? s_l) is used for the lower atmosphere (below about
50 km altitude). Eddy diffusion processes involve the eddy
momentum diffusivity that is expressed numerically as
(Hickey and Yu, 2005)

n, = 100sech(2.6 x (z(km) — 90.0)/20) + 0.1.

We plot the molecular kinematic viscosity v plus the eddy
momentum diffusivity . (v + 7., units in m*s~ 'Y in the left
panel of Fig. | as a fynction of altitude. Another eddy diffu-

(A3)
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sion process is due to the eddy thermal diffusivity x, = /3
(units in m” s '), where we consider the Prandtl number as
3 and the plot for «, is neglected because of its similarity to #,.

Rayleigh friction and Newtonian cooling coefficients
(units in s~') share a numerical function of altitude and
provide an artificial sponge layer near the upper boundary
to simulate the radiation conditions. They have large effects
near the upper boundary and exponentially decrease with
lower altitudes away from the upper boundary.

KR = K,\r = M EXp [(Z - 250 km)/7 km], (A4)

where w 1s the primary wave frequency and = is the altitude.
Slip boundary conditions on the lower boundary (z = 0)
are (Lindzen, 1970)

—?- (', w , T} =i lid o/, T ), (A5)
az

where

¢, = 1.7x 107" ms™" /u(z = 0), (A6)

where v (z = 0, units in m” s ') is the molecular kinematic
viscosity on the ground (see Eq. (Al)). In our simulations
the results derived from the thermal excitation centered
at the altitude of 8 km are insensitive to the boundary con-
ditions from the lower boundary.
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