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Abstract

In this paper a new frequency domain technique is introduced for the modal
identification of output-only systems, i.e. in the case where the modal
parameters must be estimated without knowing the input exciting the system.
By its user friendliness the technique is closely related to the classical
approach where the modal parameters are estimated by simple peak picking.
However, by introducing a decomposition of the spectral density function
matrix, the response spectra can be separated into a set of single degree of
freedom systems, each corresponding to an individual mode. By using this
decomposition technique close modes can be identified with high accuracy

even in the case of strong noise contamination of the signals. Also, the
technique clearly indicates harmonic components in the response signals.

(Some figures in this article are in colour only in the electronic version; see www.iop.org)

1. Introduction

Modal identification of output-only systems is normally
associated with the identification of modal parameters from
the natural responses of civil engineering structures, space
structures and large mechanical structures. Normally, in these
cases the loads are unknown and, thus the modal identification
has to be carried out based on the responses only. Real case
examples on some civil engineering structures can be found in
Ventura and Horyna [1] or Andersen er al [2].

The present paper deals with a new way of identifying the
modal parameters of a structure from the responses only when
the structure is loaded by a broad-banded excitation.

The technique presented in this paper is an extension of
the classical frequency domain approach often referred to as
the basic frequency domain (BFD) technique, or the peak
picking technique. The classical approach is based on simple
signal processing using a discrete Fourier transform, and uses
the fact that well separated modes can be estimated directly
from the power spectral density matrix at the peak [3]. Other
implementations of the technique make use of the coherence
between channels [4].

0964-1726/01/030441+05$30.00  © 2001 IOP Publishing Ltd
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The classical technique gives reasonable estimates of the
natural frequencies and mode shapes if the modes are well
separated. However, in the case of close modes, it can be
difficult to detect the close modes, and, even in the case
where close modes are detected, estimates becomes heavily
biased. Furthermore, the frequency estimates are limited by
the frequency resolution of the spectral density estimate and,
in all cases, damping estimation is uncertain or impossible.

Even though the classical approach has limitations
concerning accuracy in the identification process, the classical
approach has important advantages when compared to other
approaches. It is natural to compare it with classical two-stage
time domain approaches such as the polyreference technique
[5]. the Ibrahim time domain technique [6] and the eigensystem
realization algorithm [7], or to compare it with the new one-
stage time domain identification techniques known as the
stochastic subspace identification algorithms [8]. The main
advantages compared to these other techniques is that the
classical approach is much more user friendly, it is faster,
simpler to use and gives the user a ‘feeling’ of the data he or she
is dealing with. The fact that the user works directly with the
spectral density functions helps the user in figuring out what
is structural just by looking at the spectral density functions.
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a

Figure 1. Geometry of ¢wo-storey building model. Measurement
points are indicated by arrows.

This reinforces the users understanding of the physics and thus
provides a valuable basis for a meaningful identification.

The technique presented in this paper is a frequency
domain decomposition (FDD) technique. It removes all the
disadvantages associated with the classical approach, but keeps
the important features of user friendliness and even improves
the physical understanding by dealing directly with the spectral
density function. Furthermore, the technique gives a clear
indication of harmonic components in the response signals.

In this paper it is shown that taking the singular value
decomposition (SVD) of the spectral matrix, the spectral
matrix is decomposed into a set of auto spectral density
functions, each corresponding to a single degree of freedom
(SDOF) system. This result is exact in the case where the
loading is white noise, the structure is lightly damped and when
the mode shapes of close modes are geometrically orthogonal.
If these assumptions are not satisfied the decomposition
into SDOF systems is approximate, but still the results are
significantly more accurate than the results of the classical
approach.

2. Theoretical background of frequency domain
decomposition

The relationship between the unknown inputs x(¢) and the
measured responses y(7) can be expressed as [9]

G (jw) = H(jw)G . (jw) H (jo)" (1)

where G, (jw) is the (r x r) power spectral density (PSD)
matrix of the input, r is the number of inputs. G, (jw) is the
(m x m) PSD matrix of the responses. m is the number of
responses, H (jw) is the (m x r) frequency response function
(FRF) matrix and the overbar and superscript T denote the
complex conjugate and transpose, respectively.

The FRF can be written in partial
pole/residue, form

fraction, i.e.

n R R
Hjw) =Y — - )

= k= =
oo — A jo— A

442

where n is the number of modes, 2, is the pole and Ry is the
residue:
T
Ry = vy (3)

where ¢; and y; are the mode shape vector and the modal
participation vector, respectively. Suppose the input is white
noise, i.e. its PSD is a constant matrix (G, (jw) = C), then
equation (1) becomes
Ry Ry ]
+

G_\'_\'Uw) = ,Zj Z [J(v — }»k jw ~ )—»k

(=1 s=I

= H

Ry R

xC[. E ] )
Jw_)‘.v _]w_l\

where superscript H denotes a complex conjugate and
transpose. Multiplying the two partial fraction factors and
making use of the Heaviside partial fraction theorem, after
some mathematical manipulations, the output PSD can be
reduced to a pole/residue form as follows

n A D
ny(jw):Z.Ak +.Ak_ " .Bk . .Rk_
Sio—M  jo—XA —Jo—A  —jo— A
(5)
where Ay is the kth residue matrix of the output PSD. As for the
output PSD itself, the residue matrix is an (m x m) Hermitian
matrix and is given by

n RT RT
Ay = R.C e F == . (6)
S (Z B = e —Ak—xs)

s=1

The contribution to the residue from the kth mode is given by

RcCRf
Ap=—% (7
20(k
where o is minus the real part of the pole Ay = —oy +jwy. As

it appears this term becomes dominating when the damping
is light, and, thus, is the case of light damping; the residue
becomes proportional to the mode shape vector

Ay & ReC Ry = dvy Cidf = dindpl (8)

where d is a scalar constant. At a certain frequency w only a
limited number of modes will contribute significantly, typically
one or two modes. Let this set of modes be denoted by Sub(w).
Thus, in the case of a lightly damped structure, the response
spectral density can always be written

G_\"\' (]U)) = Z

keSub(w)

iy " A

- (9)
Jw — Ak

jw—)-\k'

This is a modal decomposition of the spectral matrix. The
expression is similar to the results one would get directly from
equation (1) under the assumption of independent white noise
input, i.e. a diagonal spectral input matrix.

3. Identification algorithm

In the FDD identification, the first step is to estimate the PSD
matrix. The estimate of the output PSD G, (jw) known at
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Figure 2. Singular values of the PSD matrix of the response.

discrete frequencies w = w; is then decomposed by taking the
SVD of the matrix )

Gyy(jwi) = U; S,iUM (10)
where the matrix U; [uir, iz, ..., u;y] is a unitary
matrix holding the singular vectors u;;, and S; is a diagonal
matrix holding the scalar singular values s;;. Near a peak
corresponding to the kth mode in the spectrum this mode, or
maybe a possible close mode, will be dominating. If only
the kth mode is dominating there will only be one term in
equation (9). Thus, in this case, the first singular vector u;; is
an estimate of the mode shape

¢ = up (11)

and the corresponding singular value is the auto-PSD function
of the corresponding SDOF system, refer to equation (9).
This PSD function is identified around the peak by comparing
the mode shape estimate ¢ with the singular vectors for the
frequency lines around the peak. As long as a singular vector
is found that has a high modal assurance criterion (MAC) value
with ¢, the corresponding singular value belongs to the SDOF
density function. :

From the piece of the SDOF density function obtained
around the peak of the PSD, the natural frequency and
the damping can be obtained. In this paper the piece of
the SDOF PSD was taken back to the time domain by an
inverse fast Fourier transform (IFFT), and the frequency and
the damping was simply estimated from the crossing times
and the logarithmic decrement of the corresponding SDOF
autocorrelation function.

In the case where two modes are dominating, the first
singular vector will always be a good estimate of the mode
shape of the strongest mode. However, in the case where the
two modes are orthogonal, the first two singular vectors are
unbiased estimates of the corresponding mode shape vectors.
In the case where the two modes are not orthogonal, the bias on
the mode shape estimate of the dominant mode will typically
be small, but the bias on the mode shape estimate of the weak
mode will be strong. Thus, one has to estimate the mode shapes

for the two close modes at two different frequency lines, one
line where the first mode is dominant and another frequency
line where the second mode is dominant.

4. Example, simulation of a two-storey building

In this example the response of a two-storey building is
simulated using a lumped parameter system with six degrees
of freedom. The measurements are assumed to be taken so that
the rigid body motions of the floor slabs can be estimated. The
geometry and the measurement points are shown in figure 1.

This structure has two sets of close modes. The first two
modes are bending modes; the model was calibrated in such
a way that these two bending modes were close, but not very
close. The third mode is a torsion mode and the fourth and
fifth modes are again close bending modes. The model was
calibrated in such a way that the fourth and fifth modes were
very close, nearly repeated poles.

The response was simulated using a vector ARMA
model to ensure that the simulated responses were covariance
equivalent [10]. The model was loaded by white noise, and
the response was analysed using the identification technique
introduced above. The simulated time series had a length of
10000 data points and three cases were considered: no noise,
10% noise added and 20% noise added.

The singular values of the spectral density function matrix
are shown in figure 2. As it appears, the close modes are clearly
indicated in this plot. Using the FDD identification procedure
described above, the natural frequencies and damping ratios
were identified with high accuracy, see table 1 for the natural
frequencies and table 2 for the damping values. As it appears,
the technique is not sensitive to the noise. Also, the mode shape
estimates were very close to the exact results. Note especially
the mode shapes for the two nearly repeated modes (the fourth
and the fifth) in figure 5.

5. Indication of harmonics

As explained above, the FDD technique presented in this paper
decomposes the spectral density into a set auto spectral density
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Table 1. Estimated natural frequencies (in hertz).

Without  10% 20%
Exact noise noise noise
18.686 18.676 18.661  18.665
21.054 20.930 20.927 20.938
38.166  38.188 38.188  38.2006 -
55.055 55.036 55.011  54.999
55.121  55.129 55433 535125

. Table 2. Estimated damping ratios (in per cent).

Without  10% 20%
Exact noise noise  noise
2.13 2.22 2.19 2.33
1.89 1.97 1.98 1.97
1.04 1.12 1.11 1.13
0:72 0.61 0.61 055
0.72 4076 0.76 0.77

Figure 3. Estimated mode shapes for the first and the second modes
(building bending).

Figure 4. Estimated mode shape for the third mode (building
torsion).

functions, each one corresponding to one of the SDOF system
representing the corresponding mode. If a harmonic is present,
this corresponds a local amplification of the auto spectral
density function of all the SDOF systems, i.e. all, or nearly
all, of the singular values in the spectral plot will show a peak
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Figure 5. Estimated mode shapes for the fourth and the fifth modes
(building bending).

at the frequency where the harmonic is present. This result
also holds in the case of a quasi-stationary harmonic, i.e. in the
case of a harmonic with a slowly varying frequency.

Thus, if one observes that not only the first singular value
has a peak at a certain frequency, but most of the other singular
also have a peak at that same frequency, then this is strong
indication that the peak does not represent a structural response
but a harmonic. An example of the application of this feature
of the FDD technique is given in Brincker et al [15].

If a structural mode is close to the harmonic, the harmonic
does not destroy the mode shape estimate. However, one
should be careful not to use the amplified values of the SDOF
bell (amplified by the harmonic) when using the inverse Fourier
transform to estimate frequency and damping in the time
domain. This will heavily bias the frequency and damping
estimate.

6. Conclusions

In this paper a new frequency domain identification technique,
FDD, has been introduced. The technique is based on
decomposing the PSD function matrix using SVD. It has been
shown that this decomposes the spectral response into a set of
SDOF systems, each corresponding to one individual mode.

The technique has been illustrated on a simulation
example with noise and -close modes. The results clearly
indicate that the present technique is able to estimate close
modes with high accuracy and that the technique is not sensitive
to noise. In the case of close modes that are not orthogonal.
the mode shape of the dominant mode is still well estimated.
However, if the other mode is not dominating any frequency,
other ways of estimating the mode shape for such a mode must
be introduced.

The technique has been applied successfully to several
civil engineering cases [11,12] and to several cases of
identification in mechanical engineering where the structure
was loaded by rotating machinery [13-15].

The technique clearly indicates the presence of harmonics
in the response signal, i.e. without further indication the user
directly separates harmonic peaks from structural response
peaks.
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Abstract

Modal validation is of paramount importance for all two-
stage time domain modal identification algorithms.
However, due to a higher noise/signal ratio in
operational/ambient modal analysis, being able to determine
the right model order and to distinguish between structural
modes and computational modes become more significant
than in traditional modal analysis. The two major modal
indicators, i.e. Modal Confidence Factor (MCF) and Modal
Amplitude Coherence (MAmC) are extended to two-stage
time domain modal identification algorithms, together with
a newly developed indicator, named as Modal Participation
Indicator (MPI). The application of the three indicators is
illustrated on different cases of operational/ambient modal
identification. Three major time domain modal
identification algorithms are used, the Polyreference
Complex Exponential (PRCE), Extended Ibrahim Time
Domain (EITD), Eigensystem Realization Algorithm
(ERA). The three identification algorithms are implemented
from a unified point-of-view with the modal indicators.
Numerical simulations are conducted on a two-story
building structure and on an aircraft model and it is
investigated how the modal indicators work to distinguish
the physical modes from the computational modes.
Introduction

Operational modal identification has attracted great
attention in civil, acrospace and mechanical engineering in
recent yeats. Compared to traditional modal analysis, which
is normally conducted in the [ab environment making use of
both input-output data, operational/ambient modal analysis
has many advantages:

* No artificial excitation needed and no boundary
condition simulation required;
Dynamic characteristics of the whole system, instead
of component, can be obtamed,
For all or part of measurement coordinates can be
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used as references, the operational modal
identification is always Multi-Input (Reference)-
Multi-Output MIMO algorithm. The closed-spaced
or even repeated modes can easily be handled, and,
therefore, suitable for real world complex structures;
The model identified under real loading will be
linearized, due to broad band ambient/random
excitation, for much more representative working
points;

Operational modal identification can not only be
utilized for structural dynamics analysis and design,
but also In-situ vibration based structural health
monitoring and damage identification.

Many time domain MIMO modal identification algorithms
such as Polyreference Complex Exponential (PRCE),
Extended Tbrahim Time Domain (EITD), Eigensystem
Realization Algorithm (ERA) and its extension [1]-[6], etc.
have been developed in 1980°s. Impulse Response
Functions (IRF) is measured at first, normally via inverse
FFT from FRF, and then modal parameters are identified
via above-mentioned algorithms using IRF data. The 2-
stage modal identification techniques have been
successfully used for traditional modal analysis. However,
they can also be adopted for operational modal analysis. In
the 1990’s a Natural Excitation Technique (NEXT) was
proposed [7]. NEXT is based on the principle that
Correlation Function (CF) measured under natural
excitation (or operational/ambient condition) can be
expressed as a sum of decaying sinusoids. Each decaying
sinusoid has 2 damped natural frequency, damping ratio and
mode shape coefficient that is identical to the one of the
corresponding structural mode. According to this principle,
all the 2-stage time domain MIMO identification techniques
can be adopted for operational/ambient modal identification
by using CFs instead of IRFs.

However, all the ime domain (TD) modal identification
algorithms have a serious problem on model order



determination. When extracting physical or structural
modes, the TD modal identification algorithm always
generates spurious or computational modes to account for
unwanted effects, such as noise, leakage, residuals and non-
linearity’s, etc. The computational modes fulfill an
important role in that they permit more accurate modal
estimation by supplying statistical DOF to absorb these
effects. In the traditional modal identification IRF can be
obtained via inverse FFT of Frequency Response Function
(FRF). and may have less computational modes. For
operational modal identification, which makes use of
correlation function calculated from random response data,
the model order determination and structural modes
distinguishing become much more significam. Therefore, it
is extremely important to determine the correct number of
mode] order or total number of modes at first, and then to
distinguish structural modes from computational ones. In
order to accomplish this important task, many modal
validation approaches have been developed.

Modal wvalidation can be performed via three kind
approaches: visual inspection, modal indicator and diagram.
Visual inspection of mode shapes and comparing measured
data with those synthesized from the estimated modal
parameters are typical examples of these qualitative
approaches. The second kind of approaches make use of
quantitative modal indicators, such as Modal Assurance
Criterion (MAC), Modal Confidence Factor (MCF), Modal
Amplitude Coherence (MAmC), etc. Graphical validation
involves tracking the model error, or rank of the data
matrix, or estimating frequency, damping as a function of
model order. The resulting Error Chart, Rank Chart or
Stability Diagram is then utilized for modal validation.

In this paper two modal indicators, MCF and MAmC, are
extended and a new one named as Modal Participation
Indicator (MPY) is developed for major 2-stage time domain
modal identification algorithms. Numerical simulations via
a two-story building and an aircraft model are conducted to
show the performance of the three modal indicators for
operational modal identification algorithms—PRCE, EITD
and ERA.

Modal Indicators
1. Modal Assurance Criterion (MAC).

Modal Scale Factor (MSF) and MAC are used widely to
compare two modal vectors. The MSF gives a least squares
estimate of the ratio between two vectors

H
MSF($,.6,) =if;,—i‘— o)
MAC is defined as [8]
o o,|
7o, ko7e.)

MAC($,.4,) = (2)
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Which is actually the square of the correlation coefficient of
the two modal vectors. If MAC is unity the two modal
vectors are identical within modal scale factor. Therefore,
the MAC can be utilized as a modal indicator for different
modal estimates.

2. Modal Confidence Factor (MCF)

Ibrahim introduced the concept of MCF by generating
pseudo-measurements in the ITD modal identification
algorithm [9]. These pseudo-measurements are actually
delayed physical time signals. MCF exploits redundant
phase relationships that are satisfied by physical modes, but
which are meaningless for computational modes. The MCF
has been extended for the PRCE [10] For r-th mode MCF
can be calculated by the following formula

HT
MCF, = ¢ & & 3)
Where A is the eigenvalue, At is the sampling time interval
and p is a positive integer. For a physical mode, the MCF
would be unity, whereas computational modes would have a
MCF of arbitrary phase and amplitude. A MCF close to one
is thus a necessary, but not sufficient reason for an
eigenvector to be associated with a physical mode.

It is obvious that MCF can also be used for other 2-stage
TD modal identification algorithms, such as EITD, ERA,
etc. MCF is a complex number. For simplicity only the
norm can be used for modal indicator. The main drawback
of the method is that the amount of the data is doubled.

3. Modal Amplitéude Coherence (MAmMC)

MAmC was proposed by the authors of ERA [11] for
distinguishing structural modes from noise modes with
ERA. We have extended the MAmC to all 2-stage TD
modal identification algorithms (PRCE, EITD, ERA, elc).
The basic formulation for MAmC is derived as follows.

For a linear system, the map from input to output can be
described by Markov parameter (Impulse Response
Function in traditional modal analysis or Covariance
Functions in Amblem modal analisxs) sequence

Felfy BT, Ty @
Where Nt is the number of the data points. In the modal
coordinate the Markov parameter can be expressed as

= 5o ®)
r=1
Where ¢, A, and vy, are

modal participation factor,
sequence

r-th modal vector, eigenvalue and
respectively. Define the

~f a e ey e
Which represents the time series reconstructed from the
identified eigenvalue and modal participation factor. The
Markov parameter becomes



Yk = .?1 ¢rér (7)
1t can be seen that the sequence g, is associated with mode
shape ¢, and is called the identified Modal Amplitude time
history for the r-th mode. The modal amplitude can also be
calculated directly from measured Markov parameters via
SVD of Hankel matrix, and denoted as q. With noise-
polluted data and nonzero singular values truncated, the
identified modal amplitude is an approximation of the one
calculated directly from measured Markov parameters. The
MAmC can then be defined as correlation coefficient or
coherence function of the two modal amplitude vectors as
-H —

lara,

MAmC = P ®)

44,

.9,
4. Modal Participation Indicator (MPI)

In the ambient/operational modal analysis, Correlation or
Covariance Function can be measured as Markov
parameter, and expressed via eigenvalue, modal vector
(mode shape) and modal participation factor:

Ye=2o057] ©)
r=1

Choosing all the measurement coordinates as references, the
dimension of modal partiion vector is then equal to
corresponding mode shape. We can therefore define Modal
Participation Scale (MPS) a, as

Y=, (10)
The contribution of the r-th mode to the covariance matrix
can then be expressed as

Y =06, (1)
MPI represents a kind of “kinetic energy” in time domain,
and can be adopted as a modal indicator to distinguish
structural and computational modes. MPI can be calculated

via least square solution of the two vectors as the following
formula

pe
MPI, =a, =11
o6,
When implementing, r-th modal participation indicator
MPYI, is normalized as the percentage of the “total energy”.

(12)

Numerical Simulations for Operational Modal
Identification

The MAmC, MPF and MCF are applied in major 2-stage
time domain modal identification algorithms and applied to
operational modal identification as modal indicators.

Three major time domain modal identification algorithms,
PRCE, EITD and ERA, arc implemented via unified point-
of-view as follows:
< Establish Hankel matrices Hy and H;, from measured
covariance functions;
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o Calculate system matrix via least squares solution
from Hankel matrices for PRCE or EITD;

< Calculate system input and measurement matrices via
singular value decomposition for ERA;

< Eigenvalue solution of system matrix to obtain
eigenvalues and mode shapes for EITD or eigenvalues
and modal participation vectors for PRCE;

< Least squares solution to obtain modal participation
vectors for EITD, and mode shapes for PRCE;

o For ERA, eigenvalue solution of the system matrix to
obtain eigenvalues and mode shapes together with
measurement matrix, and modal participation vectors
from input matrix;

Two examples with closcly spaced modes are used to show
the performance of the different modal indicators.

1. Two-story Building

The first numerical example is a two-story building, which
is simulated by a lumped parameter system with 6 degrees
of freedom. The measurements are assumed to be taken so
that the rigid body motions of the floor slaps can be
estimated. The geometry and the measurement points are
shown in Figure 1. This structure has two sets of close
modes. The first two modes are first bending modes, and
these two bending modes are close, but not very close. The
third mode is a torsion mode. The fourth and fifth modes
are very closed second bending modes. Figure 2 depicts
first 5 modes. The response was simulated using a vector
ARMA model to ensure that the simulated responses were
covariance equivalent [13]. The model was loaded by white
noise, and the response was analyzed using the 2-stage time
domain identification techniques introduced above. The
simulated time series had a length of 10,000 data points
with 20 % noise added.

Computer simulations of operational modal identification
were conducted using PRCE, EITD and ERA with MAmMC,
MPI and MCF as modal indicators. Table 1 to 3 present
MAmC and MPI results via PRCE, EITD and ERA
identification, respectively. Tables 4 and 5 show the results
of MCF via EITD and PRCE separately for double data are
needed in order to compute MCF. The main parameters to
be selected in the numerical simulation are the number of
total modes (n) and the number of data points. In the Tables
“*” denotes the target modal frequencies. The range of
damping ratio, 0-5 %, is used as the first “filter” to
eliminate computational modes. It can be seen that all three
modal indicators work pretty well in distinguishing
structural modes from computation modes. Compared to
MAmC and MCF, the newly proposed MPI has better
performance.

2. GARTEUR Aircraft Model
An aircraft model called GARTEUR developed by the



Group of Aeronautical Research and Technology in
EURope is adopted as the second example [14] The model
represents the dynamic characteristics of real world aircraft,
and is widely used in Europe. The main requirement for the
GARTEUR model is to simulate dynamic characteristics of
real world aircrafi. GARTEUR model has the following
features: (1) A group of 3 very closely spaced modes, (2)
Frequency range from 5 to 60 Hertz, (3) Special damping.
Treatment via adding visco-elastic materials on the wing
surface; (4) A joint at the wing/fuselage connection for
transportation with model dimension of 2 by 2 meters

The Finite Element Model (FEM) of Garteur consists of 51
three-dimensional beam elements and 68 nodal points with
altogether 408 DOF model. Figure 3 presents the first 6
modes of GARTEUR model. The first six natural

frequencies are: 6.09Hz, 15.80Hz, 33.01Hz, 33.66Hz,
35.14Hz and 49.79 Hz.

Markov parameters are synthesized from the modal
parameters calculated from FEM with 1.00% damping
ration added Aliogether 24 DOFs are selected as
measurement locations. To simulate the noise-pollution test
data. 10% Gaussian distributed noise is added to
svnthesized Markov parameters. Sampling frequency is
150Hz with 1024 sampling points

As for the 2-storv building case, all three modal
identification algorithms are used for GARTEUR example.
However, the simulation data are synthesized using 2-input
24-output measurement, therefore, only MAmC and MCF
are adopted for modal indication. Tables 6 to 10 show the
performance of MAmC and MCF for operational modal
identification algorithms PRCE, EITD and ERA. It is
obscrved that the two modal indicators exhibit favorable
performance

Concluding Remarks

I. Two modal indicators. Modal Confidence Factor
(MCF) and Modal Amplitude Coherence (MAmC) are
extended to major 2-stage time domain operational
modal identification algorithms;

2. A new modal indicator named as Modal Participation
Indicator (MPI) is developed and implemented:

3. Three major operational/ambient modal identification
algorithms, Polyreference Complex Exponential
(PRCE). Extended Ibrahim Time Domain (EITD) and
Eigensystem Realization Algorithm (ERA), arc
implemented from unified point-of-view together with
three modal indicators:

4. Numerical simulations are conducted using two
examples: 2-story building and an aircraft model. The
results show that all three modal indicators work pretty
well in distinguishing structural modes from
computational ones;

5. MCF needs double data, and hence more computing
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intensive and time consuming; MAmC often results
with the number closed to unity and some times is
hardly to separate noise modes from the structural ones;

6. Newly proposed Modal Participation Indicator (MPI)
can clearly indicate the structural modes in most cases,
and performs better than the other two indicators;

7. The identification results are normally depending on
the parameter selection for most of 2-stage time domain
modal identification. To finally determine the true
structural modes Stability Diagram is suggested
together with modal indicators.
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Table 1 Results of EITD for Two-Story Building (n=12)

Table 2. Results of PRCE for Two-Story Building (n=15)

Mode | Freq(Hz) | Damp.(%) | MamC | MPL(%) Mode | Freq.(Hz) | Damp(%) | MamC | MPL(%)

I 18.69* 2.46 1.00 3.02 1 18.76* 2.61 1.00 1.89
2 20.97* 2.14 1.00 7.1 2 20.88* 1.87 1.00 4.32
3 38.08 1.86 1.00 0.01 3 38.14 0.79 0.98 0.60
4 38.14* 0.89 1.00 7.64 4 38.15* 0.99 1.00 4.84
5 55.03* 0.65 1.00 26.05 5 54.95 2.26 0.86 0.20
6 55.08* 0.64 1.00 55.67 6 55.02% 0.61 0.81 42.68
7 55.13 2.30 0.99 0.11 £ 55.09* 0.67 1.00 44.9
8 66.64 433 0.90 0.38 8 62.01 2.22 0.67 0.40

9 69.39 0.23 0.24 0.15

Table 3. Results of ERA for Two-Story Building (n=8) Table 4. Results of EITD for Two-Story Building (n=15)

Table 5. Results of PRCE for Two-Story Building (n=15)

Mode | Freq.(Hz) | Damp.(%) | MAmC | MPL(%) ~Mode Freq.(Hz) Damp.(%) MCF
1 18.68* 2.19 1.00 18.62 1 18.70* 2.15 0.98
2 20.93* 1.88 1.00 18.56 2 20.91* 1.80 0.94
3 38.16* 1.03 1.00 18.36 3 37.31 1.75 0.21
4 54.62 1.40 0.96 6.22 4 38.12* 1.32 0.53
5 55.01* 0.55 1.00 15.59 5 38.19* 0.86 0.93
6 55.17* 0.54 1.00 15.94 6 55.00* 0.74 0.89
7 59.19 3.71 0.54 6.70 7 55.03 1.11 0.71

8 55.16* 0.54 0.93
9 55.49 3.80 0.06
10 61.10 2.37 0.20

Table 6. Results of EITD for GARTEUR. (n=48)
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Mode |  Freq.(Hz) Damp (%) MCF Mode | Freq.(Hz) Damp (%) MAmC

1 18.65* 2.20 0.92 1 6.11* 1.10 1.00
2 21.01* 1.65 0.93 2 13.52 0.27 0.95
3 278 3.29 0.71 3 15.80* 0.99 1.00
4 35.05 1.56 0.43 4 17.64 0.77 0.75
5 38.15* 1.00 0.93 5 19.81 4.87 0.98
6 38.38 1.22 0.92 6 20.58 1.05 0.89
7 53.57 0.46 0.92 7 26.66 0.82 0.90
8 54.98* 0.61 0.94 8 28.16 031 0.92
9 55.13* 0.57 0.94 9 29.40 0.65 0.90
10 55.23 1.03 0.89 10 30.16 2.45 0.97
11 55.37 3.06 0.72 11 33.00* 1.20 1.00
12 58.29 0.34 0.80 12 33.51* 1.31 1.00
13 61.22 0.02 0.33 13 33.84 3.78 0.99
14 62.41 421 0.36 14 35.09* 0.91 1.00
15 66.52 4.32 0.72 15 37.01 4.06 0.99

16 37.01 4.06 0.99
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ABSTRACT

The pertormance of a modal identification algorithm depends
profoundly on the measured data To obtain high quality
wieasurements. especially in-operation measurements. careful
sensor placement is of great importance. A newly developed sensor
placement method for in-operation modal identification based on
time domain data is presented in this paper. The new method
utilizes the projection theory to compare the contribution of the
candidate DOFs to the rank of Hankel matrix of the measured data.
Firstly, the Hankel matrix with all candidate DOFs, which may be
based on a priori Finite-Element Model of the structure, is
constructed. Then an orthogonal projector matrix of the Hankel
matrix can be extracted. The trace of the projector matrix provides
a convenient representation of its rank. Therefore. the candidate
DOFs can be sorted by the diagonal elements of the projector
matrix. and DOFs corresponding to the smallest ones are
climinated. To avoid an ill-conditioned Hankel matrix, a modified
condition number is introduced as a constraint. [f the removal of
some DOF augments this condition number, it should be remained.
The new Hankel matrix with the remaining DOFs is then
re-constructed. This process is repeatedly executed until the desired
number of sensors remain. Finally, the numerical simulation is
conducted to demonstrate the effectiveness of the new sensor
placement method.

NOMENCLATURE

system matrix
input matrix
output matrix
state vector
output vector
input vector
matrix rank

R >XNox

Rank(.)
Trace(.)

matrix trace

o

pseudo-inverse of matrix A
5 transpose  of matrix A
Markov-parameter
k" sampling interval
Hanklel matrix
singular-value
see Eq. 8
Hankel matrix row/column shift
Number Of Freedom
number of candidate measurement positions
number of inputs
number of modes to be identified

38R S TN
T ™ X

n number of the desired sensors

R, n dimensional space

S5, sub-spaces of space R,

As s projection transformation of’ S, along S.

@ orthogonal direct sum

P projector matrix

Ph diagonal elements of projector matrix

E, contribution of the i* DOF to the rank of
the Hankel matrix

RS ratio S(1)/S(N)

1 INTRODUCTION

Modal identification using dynamic tests has been extensively
incorporated into the design development. Since the performance
of modal parameter identification algorithms depends on the
measured data, a systematic placement of sensor positions to obtain
ideal measurements is necessary. And the limitations in the number
of sensors especially for in-operation modal identification further
necessitate the optimal placement of sensors.

A large number of sensor placement methods appeared in the last
two decades!'M¥. The simplest sensor placement method is visual
inspection. This mecthod just visually inspects certain dynamic
parameters of the structures, and selects the DOFs with high/low
values as the measurement locations. The object to be inspected in
this method may be the mode shapes of interest. Modal Kinetic
Energy(MKE). Driving Point Residues{DPR) and etc. Although
efficient, this kind of methods is only practical tor simple
structures.

Recently, some new iterative sensor placement methods have been
developed. The most practical and popular method should be the
Effective Independence(EN method proposed by Kammer. The
idea of this EI method is that those DOFs resulting in the most
independent target modal matrix are the best candidates to locaie
the sensors. It eliminates DOFs that do not contribute 10 the
independence of the target mode shapes. Also in this paper. the
projection theory was introduced to rank the contribution of ¢ach
DOF to the rank of the target modal matrix. Obviously. El is a
Frequency Domain(FD) method.

For Time Domain modal parameter identification algorithms. such
as Ibrahim Time Domain method(ITD). Extended Ibrzhim Time
Domain method(EITD). Ploy-reference Complex Exponenual
method(PRCE), Eigensystem Realization Algorithm(ERA) and so
on. Hankel matrix of the Markov-parameter plays the most
important roles in the identification process. A column/row full
rank and well-conditioned Hankel matrix is the precondition of a
successful identification. Since singular-value truncation technique

1550



